Bài 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Bài 2. Tỉ số lượng giác của góc nhọn
Bài 3. Bảng lượng giác
Bài 4. Một số hệ thức về cạnh và góc trong tam giác vuông
Bài 5. Ứng dụng thực tế các tỉ số lượng giác của góc nhọn. Thực hành ngoài trời
Ôn tập chương I – Hệ thức lượng giác trong tam giác vuông
Đề kiểm tra 15 phút - Chương 1 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 1 - Hình học 9
Bài 1. Sự xác định của đường tròn. Tính chất đối xứng của đường tròn
Bài 2. Đường kính và dây của đường tròn
Bài 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây
Bài 4. Vị trí tương đối của đường thẳng và đường tròn
Bài 5. Dấu hiệu nhận biết tiếp tuyến của đường tròn
Bài 6. Tính chất của hai tiếp tuyến cắt nhau
Bài 7. Vị trí tương đối của hai đường tròn
Bài 8. Vị trí tương đối của hai đường tròn (tiếp theo)
Ôn tập chương II – Đường tròn
Đề kiểm tra 15 phút - Chương 2 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 9
Đề bài
Trong hình 33, \(AC=8cm,\ AD=9,6cm,\ \widehat{ABC}=90^o,\ \)
\(\widehat{ACB}=54^o\) và \(\widehat{ACD}=74^o\). Hãy tính:
a) AB;
b) \(\widehat {ADC}\).
Phương pháp giải - Xem chi tiết
a) Sử dụng hệ thức giữa cạnh và góc trong tam giác vuông: \(\Delta{ABC}\) vuông tại \(B\) thì: \(AB=AC. \sin C\).
b) Kẻ thêm đường cao để làm xuất hiện tam giác vuông (Kẻ \(AH ⊥ CD\))
+) Sử dụng hệ thức về cạnh và góc trong tam giác vuông: \(\Delta{ABC}\) vuông tại \(A\) khi đó: \(AB=BC. \sin C\) hoặc \(AC=AB. \sin B\).
+) Biết \(\sin \alpha\) dùng máy tính ta tính được số đo góc \(\alpha\).
Lời giải chi tiết
a) Xét tam giác \(ABC\) vuông tại \(B\) có:
\( \sin C = \frac{AB}{AC}\)
Nên \(AB = AC.\sin C = 8.\sin {54^0} \approx 6,472\left( {cm} \right)\)
b) Kẻ \(AH\) vuông góc với \(CD\) tại \(H.\)
Xét tam giác \(ACH\) vuông tại \(H\) có:
\(\sin C = \frac{AH}{AC}\)
Nên \(AH = AC.\sin C = 8.\sin {74^0} \approx 7,69\left( {cm} \right)\)
Xét tam giác \(AHD\) vuông tại \(H\) có:
\(\sin {\rm{D}} = \dfrac{AH}{AD} \approx \dfrac{7,69}{9,6} \approx 0,801\)
Bấm máy tính: SHIFT sin 0,801 =
\(\Rightarrow \widehat D \approx {53^0}\).
Đề thi vào 10 môn Anh Hải Dương
Đề thi vào 10 môn Văn Lào Cai
Đề thi vào 10 môn Toán Hoà Bình
Đề kiểm tra 1 tiết - Học kì 2 - Sinh 9
Đề thi vào 10 môn Văn Kon Tum