PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

Bài 31 trang 89 sgk Toán 9 - tập 1

Đề bài

Trong hình 33, \(AC=8cm,\ AD=9,6cm,\ \widehat{ABC}=90^o,\ \)

\(\widehat{ACB}=54^o\) và \(\widehat{ACD}=74^o\). Hãy tính:

a) AB; 

b) \(\widehat {ADC}\).

Phương pháp giải - Xem chi tiết

a) Sử dụng hệ thức giữa cạnh và góc trong tam giác vuông: \(\Delta{ABC}\) vuông tại \(B\) thì: \(AB=AC. \sin C\).

b) Kẻ thêm đường cao để làm xuất hiện tam giác vuông (Kẻ \(AH ⊥ CD\))

+) Sử dụng hệ thức về cạnh và góc trong tam giác vuông: \(\Delta{ABC}\) vuông tại \(A\) khi đó: \(AB=BC. \sin C\) hoặc \(AC=AB. \sin B\).

+) Biết \(\sin \alpha\) dùng máy tính ta tính được số đo góc \(\alpha\).

Lời giải chi tiết

 

a) Xét tam giác \(ABC\) vuông tại \(B\) có:

\( \sin C = \frac{AB}{AC}\)

Nên \(AB = AC.\sin C = 8.\sin {54^0} \approx 6,472\left( {cm} \right)\)

b) Kẻ \(AH\) vuông góc với \(CD\) tại \(H.\)

Xét tam giác \(ACH\) vuông tại \(H\) có:

\(\sin C = \frac{AH}{AC}\)

Nên \(AH = AC.\sin C = 8.\sin {74^0} \approx 7,69\left( {cm} \right)\)

Xét tam giác \(AHD\) vuông tại \(H\) có:

\(\sin {\rm{D}} = \dfrac{AH}{AD} \approx \dfrac{7,69}{9,6} \approx 0,801\)

Bấm máy tính: SHIFT sin 0,801 = 

\(\Rightarrow \widehat D \approx {53^0}\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved