Bài 31 trang 96 Tài liệu dạy – học Toán 9 tập 2

Đề bài

Cho dây AB chắn một cung có số đo là \({120^o}\) trên đường tròn (O). Một điểm C di động trên cung lớn AB . Trên tia đối của tia CA, lấy đoạn CD = CB. Tìm tập hợp các điểm D.

Phương pháp giải - Xem chi tiết

Chứng minh tam giác BCD cân \( \Rightarrow \widehat {ADB} = {30^0}\), từ đó suy ra quỹ tích điểm D.

Lời giải chi tiết

 

 

Ta có \(\widehat {ACB}\) là góc nội tiếp chắn cung 1200 \( \Rightarrow \widehat {ACB} = {60^0}\).

Mà \(\widehat {ACB} + \widehat {BCD} = {180^0}\)(kề bù) \( \Rightarrow \widehat {BCD} = {180^0} - {60^0} = {120^0}\). 

Lại có \(CD = CB\,\,\left( {gt} \right) \Rightarrow \Delta BCD\) cân tại \(C\)

\( \Rightarrow \widehat {CDB} = \widehat {CBD}\).

Mà \(\widehat {CDB} + \widehat {CBD}+\widehat {BCD} =180^0\) (định lý tổng ba góc trong tam giác)

Nên \(\widehat {CDB} + \widehat {CBD}=180^0-\widehat {BCD}\)\( =180^0-120^0=60^0\)

\( \Rightarrow \widehat {CDB} = 60^0:2=30^0\) hay \( \Rightarrow \widehat {ADB} = 30^0\)

Mà AB cố định \( \Rightarrow D\) di chuyển trên cung chứa góc 300 dựng trên đoạn thẳng AB.

Giới hạn : Khi \(C \equiv B \Rightarrow D \equiv B\)

Khi \(C \equiv A \Rightarrow D\) trùng với điểm chính giữa của cung lớn AB chứa góc 300 dựng trên đoạn AB.

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved