LG a
Cho phương trình \({x^2} + {y^2} + {z^2} - 4mx + 4y + 2mz + {m^2} + 4m = 0\)
Xác định m để nó là phương trình của một mặt cầu. Khi đó, tìm m để bán kính mặt cầu là nhỏ nhất.
Lời giải chi tiết:
Ta có a = -2m, b = 2, c = m, \(d = {m^2} + 4m.\)
Phương trình đã cho là phương trình của một mặt cầu khi và chỉ khi
\(\eqalign{ & {a^2} + {b^2} + {c^2} - d \cr&= {( - 2m)^2} + {2^2} + {m^2} - {m^2} - 4m > 0 \cr & \Leftrightarrow {\left( {2m - 1} \right)^2} + 3 > 0\;\forall m. \cr} \)
Vậy phương trình đã cho là phương trình mặt cầu với mọi m. Bán kính mặt cầu là :
\(R = \sqrt {{{\left( {2m - 1} \right)}^2} + 3} \ge \sqrt 3 \Rightarrow {R_{\min }} = \sqrt 3 \) khi \(m = {1 \over 2}.\)
LG b
Cho phương trình:
\({x^2} + {y^2} + {z^2} + 2x\cos \alpha - 2y\sin \alpha - 4z \)
\(- (4 + {\sin ^2}\alpha ) = 0\)
Xác định \(\alpha \) để phương trình trên là phương trình của một mặt cầu. Khi đó, tìm \(\alpha \) để bán kính mặt cầu là nhỏ nhất, lớn nhất.
Lời giải chi tiết:
Ta có :\(a = \cos \alpha ,b = - \sin \alpha ,c = - 2,d = - (4 + {\sin ^2}\alpha )\)
\(\eqalign{ & {a^2} + {b^2} + {c^2} - d \cr&= {\cos ^2}\alpha + {\sin ^2}\alpha + 4 + 4 + {\sin ^2}\alpha \cr & = 9 + {\sin ^2}\alpha > 0\;\forall \alpha . \cr} \)
Phương trình đã cho là phương trình mặt cầu với mọi \(\alpha \).
Khi đó \(R = \sqrt {9 + {{\sin }^2}\alpha } \)
Vì \(0 \le {\sin ^2}\alpha \le 1\) nên \(3 \le R \le \sqrt {10} \)
Vậy \({R_{\min }} = 3\) khi \(\alpha = k\pi ,(k \in \mathbb Z).\)
\({R_{\max }} = \sqrt {10} \) khi \(\alpha = {\pi \over 2} + l\pi (l \in \mathbb Z).\)
Bài giảng ôn luyện kiến thức giữa học kì 2 môn Sinh học lớp 12
PHẦN HAI. LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NĂM 2000
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Ngữ văn lớp 12
Bài 3. Thực hành: Vẽ lược đồ Việt Nam
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Sinh học lớp 12