Đề bài
Cho khối chóp tứ giác đều S.ABCD mà khoảng cách từ đỉnh A đến \(mp\left( {SBC} \right)\) bằng 2a. Với giá trị nào của góc giữa mặt bên và mặt đáy của khối chóp thì thể tích của khối chóp là nhỏ nhất ?
Lời giải chi tiết
Giả sử O là tâm của hình vuông ABCD. Khi đó \(SO \bot \left( {ABCD} \right)\).
Gọi EH là đường trung bình của hình vuông ABCD \(\left( {E \in AD,H \in BC} \right).\)
Vì \(AD//BC\) nên \(AD//\left( {SBC} \right)\), do đó
\(d\left( {A,\left( {SBC} \right)} \right) = d\left( {E,\left( {SBC} \right)} \right)\)
Kẻ \(EK \bot SH\). Dễ thấy \(EK \bot \left( {SBC} \right)\) suy ra
\(EK = d\left( {A,\left( {SBC} \right)} \right) = 2a.\)
Ta có : \(BC \bot SH,BC \bot OH \Rightarrow \)\(\widehat {SHO}\) là góc giữa mặt bên \(\left( {SBC} \right)\) và mặt phẳng đáy. Đặt \(\widehat {SHO} =x\left( {0 < x < {\pi \over 2}} \right)\). Khi đó :
\(EH = {{2a} \over {{\mathop{\rm sinx}\nolimits} }};\;OH = {a \over {{\mathop{\rm s}\nolimits} {\rm{inx}}}};\;SO = {a \over {{\mathop{\rm s}\nolimits} {\rm{inx}}}}{\mathop{\rm tanx}\nolimits} = {a \over {{\mathop{\rm cosx}\nolimits} }}\)
Vậy: \({V_{S.ABCD}} = {1 \over 3}{S_{ABCD}}.SO = {{4{a^3}} \over {3\cos x{{\sin }^2}x}}\)
Từ đó \({V_{S.ABCD}}\) nhỏ nhất khi và chỉ khi \(y\left( x \right) = \cos x.{\sin ^2}x\) đạt giá trị lớn nhất. Ta có:
\(\eqalign{
y'\left( x \right) &= - {\sin ^3}x + 2\sin x.{\cos ^2}x \cr
& = \sin x\left( {2{{\cos }^2}x - {{\sin }^2}x} \right) \cr
& = \sin x\left( {2 - 3{{\sin }^2}x} \right) \cr
& = 3\sin x\left( {\sqrt {{2 \over 3}} - \sin x} \right)\left( {\sqrt {{2 \over 3}} + \sin x} \right) \cr} \)
Vì \(0 < x < {\pi \over 2}\) nên \(\sin x\left( {\sqrt {{2 \over 3}} + \sin x} \right) > 0\)
Gọi \(\alpha \) là góc sao cho \(\sin \alpha = \sqrt {{2 \over 3}} ;\,\,0 < \alpha < {\pi \over 2}\)
Ta có bảng biến thiên của hàm số \(y\left( x \right) = \cos x.{\sin ^2}x\):
Vậy \({V_{S.ABCD}}\) đạt giá trị lớn nhất khi \(x = \alpha \) với \(0 < \alpha < {\pi \over 2}\) và \(\sin x = \sqrt {{2 \over 3}} .\)
Bài 30. Vấn đề phát triển ngành giao thông vận tải và thông tin liên lạc
Chương 3. Di truyền học quần thể
Bài 18. Đô thị hóa
GIẢI TÍCH SBT - TOÁN 12
Tải 5 đề kiểm tra 45 phút (1 tiết ) – Chương 7 – Hóa học 12