PHẦN HÌNH HỌC - TOÁN 8 TẬP 1

Bài 35 trang 129 SGK Toán 8 tập 1

Đề bài

Tính diện tích hình thoi có cạnh dài \(6\,cm\) và một trong các góc của nó có số đo là \(60^{\circ}\)

Phương pháp giải - Xem chi tiết

- Tam giác đều là tam giác có ba cạnh bằng nhau.

- Định lí Pytago: Bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

- Diện tích hình bình hành bằng tích của một cạnh với chiều cao ứng với cạnh đó.

\(S = ah\)

- Diện tích hình thoi bằng nửa tích độ dài hai đường chéo.

\(S=\dfrac{1}{2}{d_1}.{d_2}\)

Lời giải chi tiết

 

Xét hình thoi \(ABCD\) có cạnh \(6cm\) và \(\widehat {BAD}=60^0\). Kẻ \(BH\bot AD\)

Công thức tổng quát tính độ dài đường cao BH: 

Ta có \(∆ABD\) là tam giác đều (vì tam giác \(ABD\) cân có  \(\widehat{A}\) = \(60^{\circ}\) )

Tam giác \(ABD\) đều nên đường cao BH cũng là đường trung tuyến hay \(H\) là trung điểm của \(AD\)

Suy ra \(AH=\dfrac{AD}{2}=\dfrac{AB}{2}\)

Áp dụng định lí Pytago vào tam giác vuông \(ABH\) có:

\(B{H^2} = A{B^2} - A{H^2}\)

          \( = A{B^2}-\left ( \dfrac{AB}{2} \right )^{2}\)

          \( = A{B^2}-\dfrac{AB^{2}}{4} = \dfrac{3AB^{2}}{4}\).

\( \Rightarrow BH = \dfrac{AB.\sqrt{3}}2\) (cm)

Tổng quát: Đường cao tam giác đều cạnh \(a\) có độ dài là: \({h_a}=\dfrac{a\sqrt{3}}2\)

Áp dụng vào bài với cạnh \(a=6cm\) thì \( BH = \dfrac{a.\sqrt{3}}2 = \dfrac{6\sqrt{3}}2 = 3\sqrt3\) (cm)

Tính diện tích hình thoi ABCD.

Cách 1:

Ta có: \( BH = 3\sqrt3\) (cm) (theo trên)

\({S_{ABCD}}= BH. AD = 3\sqrt 3. 6 \)\(\,= 18\sqrt 3\;(c{m^2})\)

Cách 2:

Vì \(∆ABD\) là tam giác đều nên \(BD = AB = 6\,cm\), \(AI\) là đường cao đồng thời là trung tuyến tam giác nên \(AI = \dfrac{6\sqrt{3}}{2} = 3\sqrt3\) (cm)

\(\Rightarrow AC =2AI= 6\sqrt 3\) (cm)

\({S_{ABCD}}=\dfrac{1}{2} BD. AC = \dfrac{1}{2} 6. 6\sqrt 3 \)\(\,= 18\sqrt 3\; (c{m^2})\)

 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved