Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Giải các phương trình:
LG a
LG a
\((3{x^2}-{\rm{ }}5x{\rm{ }} + {\rm{ }}1)({x^2}-{\rm{ }}4){\rm{ }} = {\rm{ }}0\)
Phương pháp giải:
Phương pháp giải phương trình dạng tích: \(A.B = 0 \Leftrightarrow \left[ \begin{array}{l}
A = 0\\
B = 0
\end{array} \right.\)
Lời giải chi tiết:
\((3{x^2}-{\rm{ }}5x{\rm{ }} + {\rm{ }}1)({x^2}-{\rm{ }}4){\rm{ }} = {\rm{ }}0\)
\( \Leftrightarrow \left[ \matrix{
3{x^2} - 5x + 1 = 0\, (1) \hfill \cr
{x^2}-{\rm{ }}4{\rm{ }} = {\rm{ }}0 \, (2) \hfill \cr} \right. \)
+) Giải phương trình (1) ta được:
\(\Delta = {\left( { - 5} \right)^2} - 4.3.1 = 13 > 0\)
Phương trình có 2 nghiệm phân biệt là: \({x_1} = \dfrac{{5 - \sqrt {13} }}{6};{x_2} = \dfrac{{5 + \sqrt {13} }}{6}\)
+) Giải phương trình (2) ta được: \({x^2} = 4 \Leftrightarrow x = \pm 2\)
Vậy phương trình đã cho có 4 nghiệm phân biệt \({x_1} = \dfrac{{5 - \sqrt {13} }}{6};{x_2} = \dfrac{{5 + \sqrt {13} }}{6};{x_3} = - 2;{x_4} = 2\)
LG b
LG b
\({(2{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}4)^2}-{\rm{ }}{\left( {2x{\rm{ }}-{\rm{ }}1} \right)^2} = {\rm{ }}0\)
Phương pháp giải:
Phương pháp giải phương trình dạng tích: \(A.B = 0 \Leftrightarrow \left[ \begin{array}{l}
A = 0\\
B = 0
\end{array} \right.\)
Lời giải chi tiết:
\({(2{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}4)^2}-{\rm{ }}{\left( {2x{\rm{ }}-{\rm{ }}1} \right)^2} = {\rm{ }}0\)
\( \Leftrightarrow {\rm{ }}(2{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}4{\rm{ }} + {\rm{ }}2x{\rm{ }}-{\rm{ }}1)(2{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}4{\rm{ }}-{\rm{ }}2x{\rm{ }} + {\rm{ }}1){\rm{ }} \)\(= {\rm{ }}0\)
\( \Leftrightarrow {\rm{ }}(2{x^2} + {\rm{ }}3x{\rm{ }}-{\rm{ }}5)(2{x^2}-{\rm{ }}x{\rm{ }}-{\rm{ }}3){\rm{ }} = {\rm{ }}0\)
\( \Leftrightarrow \left[ \matrix{
2{x^2} + {\rm{ }}3x{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0 (3) \hfill \cr
2{x^2}-{\rm{ }}x{\rm{ }}-{\rm{ }}3{\rm{ }} = {\rm{ }}0 \hfill (4) \cr} \right.\)
giải phương trình (3) ta có: \(a + b + c = 2 + 3 + (-5) = 0\) nên có hai nghiệm \({x_1} = {\rm{ }}1;{\rm{ }}{x_2} = {\rm{ }} - 2,5;\)
giải phương trình (4) ta có: \(a - b + c = 2 - (-1) + (-3) = 0\) nên có hai nghiệm \({\rm{ }}{x_3} = {\rm{ }} - 1;{\rm{ }}{x_4} = {\rm{ }}1,5\)
Vậy phương trình có tập nghiệm \(S=\{1;-2,5;-1;1,5\}\)
Đề thi vào 10 môn Văn Đà Nẵng
Unit 3: A Trip To The Countryside - Một chuyến về quê
Đề thi vào 10 môn Toán Đồng Tháp
Đề thi vào 10 môn Toán Quảng Ngãi
Đề thi vào 10 môn Văn Tây Ninh