Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Cho đường tròn \((O)\) và hai dây \(AB\), \(AC\). Gọi \(M, N\) lần lượt là điểm chính giữa của cung \(AB\) và cung \(AC\). Đường thẳng \(MN\) cắt dây \(AB\) tại \(E\) và cắt dây \(AC\) tại \(H\). Chứng minh rằng tam giác \(AEH\) là tam giác cân.
Phương pháp giải - Xem chi tiết
+) Sử dụng: "Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn."
Lời giải chi tiết
Xét đường tròn (O):
Vì \(\widehat {AHM}\) là góc có đỉnh bên trong đường tròn chắn các cung \(AM\) và cung \(NC\) nên \(\widehat {AHM}\)= \(\dfrac{sđ\overparen{AM}+sđ\overparen{NC}}{2}\,\,\, (1)\)
Vì \(\widehat {AEN}\) là góc có đỉnh bên trong đường tròn chắn các cung \(AN\) và cung \( MB\) nên \(\widehat {AEN}\)= \(\dfrac{sđ\overparen{MB}+sđ\overparen{AN}}{2}\,\,\, (2)\)
Ta có:
\(\overparen{AM}=\overparen{MB} (3)\) (\(M\) là điểm chính giữa cung \(AB\)).
\(\overparen{NC}=\overparen{AN} (4)\) \(N\) là điểm chính giữa cung \(AC\)).
Từ (1),(2), (3), (4), suy ra \(\widehat {AHM}= \widehat {AEN}\). Do đó \(∆AEH\) cân tại A
Tải 20 đề kiểm tra học kì 1 Tiếng Anh 9 mới
HỌC KÌ 2
Đề thi vào 10 môn Văn Quảng Ngãi
Câu hỏi tự luyện Tiếng Anh lớp 9 cũ
Đề kiểm tra 1 tiết - Học kì 1 - Sinh 9