Đề bài
Cho tứ diện ABCD. Gọi d là khoảng cách giữa hai đường thẳng AB và CD, \(\alpha \) là góc giữa hai đường thẳng đó. Chứng minh rằng
\({V_{ABCD}} = {1 \over 6}AB.CD.d.\sin \alpha .\)
Lời giải chi tiết
Cách 1:
Dựng hình hộp AEBF.MDNC ( gọi là hình hộp ngoại tiếp tứ diện ABCD).
Vì \(\left( {AEBF} \right)//\left( {MDNC} \right)\) nên chiều cao của hình hộp bằng khoảng cách d giữa AB và CD.
Theo bài 37 ta có :
\({V_{ABCD}} = {1 \over 3}\) Vhộp
\(\eqalign{ & = {1 \over 3}{S_{MDNC}}.d \cr & = {1 \over 3}.{1 \over 2}MN.CD\sin \alpha .d = {1 \over 6}AB.CD.d\sin \alpha . \cr} \)
Cách 2.
Dựng hình bình hành ABCE . Khi đó :
\({V_{A.BCD}} = {V_{E.BCD}}\) (do \(AE//\left( {BCD} \right)\)) (1)
\(\eqalign{ & {V_{E.BCD}} = {V_{B.ECD}}\;\;\;\;\;(2) \cr & {V_{B.ECD}} = {1 \over 3}{S_{ECD}}.d\left( {B,\left( {CDE} \right)} \right)\;\;\;(3) \cr & \cr} \)
\({S_{ECD}} = {1 \over 2}CE.CD.\sin \widehat {ECD}\)
\(= {1 \over 2}AB.CD\sin \alpha \;\;\;\;\;\;\;\;\;\;\;\;(4) \)
\(d\left( {B,\left( {CDE} \right)} \right) = d\left( {AB,CD} \right)(\) do \(AB//\left( {CDE} \right))\;(5)\)
Từ (1), (2), (3), (4), (5) suy ra :
\({V_{ABCD}} = {1 \over 6}AB.CD.d\sin \alpha .\)
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Tiếng Anh lớp 12
CHƯƠNG 8. PHÂN BIỆT MỘT SỐ CHẤT VÔ CƠ CHUẨN ĐỘ DUNG DỊCH
Bài 20. Chuyển dịch cơ cấu kinh tế
ĐỀ THI THỬ THPT QUỐC GIA MÔN HÓA HỌC
CHƯƠNG 1. ESTE - LIPIT