Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Đề bài
a) Vẽ đồ thị các hàm số sau trên cùng một mặt phẳng tọa độ:
y = 2x (1);
y = 0,5x (2);
y = -x + 6 (3)
b) Gọi các giao điểm của đường thẳng có phương trình (3) với hai đường thẳng có phương trình (1) và (2) theo thứ tự là A và B. Tìm tọa độ của hai điểm A và B.
c) Tính các góc của tam giác OAB.
Hướng dẫn câu c)
Tính OA, OB rồi chứng tỏ tam giác OAB là tam giác cân.
Tính \(\widehat {AOB} = \widehat {AOx} - \widehat {BOx}\)
Phương pháp giải - Xem chi tiết
a) Cách vẽ đường thẳng y = ax + b (trường hợp \(a \ne 0\) và \(b \ne 0\))
- Cho x = 0 thì y = b, được điểm \(P(0 ; b)\) thuộc trục tung Oy.
- Cho y = 0 thì \(x = - \dfrac{b}{a}\), được điểm \(Q\left( { - \dfrac{b}{a};0} \right)\) thuộc trục hoành Ox.
- Vẽ đường thẳng đi qua hai điểm P và Q.
b) Tìm hoành độ giao điểm (bằng cách giải phương trình hoành độ giao điểm) rồi thay vào một trong hai hàm số để tìm giá trị của tung độ giao điểm.
c) - Chứng minh tam giác đã cho là tam giác cân.
- Tìm độ lớn của góc ở đỉnh.
- Tìm độ lớn hai góc kề cạnh đáy.
Lời giải chi tiết
a) Đồ thị xem hình dưới
+) Hàm số \(y =2x\)
Cho \(x=1\Rightarrow y=2.1=2\). Suy ra điểm \((1;2)\)
Cho \(x=2\Rightarrow y=2.2=4\). Suy ra điểm \((2;4)\)
Đồ thị hàm số y = 2x đi qua điểm (1;2) và (2;4)
+) Hàm số \(y =0,5x\)
Cho \(x=2\Rightarrow y=0,5.2=1\). Suy ra điểm \((2;1)\)
Cho \(x=4\Rightarrow y=0,5.4=2\). Suy ra điểm \((4;2)\)
Đồ thị hàm số y = 0,5 x đi qua điểm (2;1) và (4;2)
+) Hàm số \(y =-x+6\)
Cho \(x=0\Rightarrow y=-0+6=6\). Suy ra điểm \((0;6)\)
Cho \(x=6\Rightarrow y=-6+6=0\). Suy ra điểm \((6;0)\)
Đồ thị hàm số y = - x + 6 đi qua điểm (0;6) và (6;0)
b) Tìm tọa độ điểm A.
Phương trình hoành độ giao điểm của (1) và (3) là:
\(-x + 6 = 2x ⇔ 6 = 2x + x ⇔ x = 2\)
Với \(x = 2\) thì \(y = -2 + 6 = 4\) nên \(A(2; 4)\)
Tìm tọa độ điểm B.
Phương trình hoành độ giao điểm của (2) và (3) là:
\(-x + 6 = 0,5x ⇔ 6 = 0,5x + x ⇔ x = 4\)
Với \(x = 4\) thì \(y = -4 + 6 = 2\) nên \(B(4;2).\)
c)
\(\eqalign{
& O{A^2} = {2^2} + {4^2} = 20 \Rightarrow OA = \sqrt {20} \cr
& O{B^2} = {4^2} + {2^2} = 20 \Rightarrow OB = \sqrt {20} \cr
& OA = OB\left( { = \sqrt {20} } \right) \cr} \)
\(⇒ ∆OAB\) cân tại \(O\)
Ta có \(\displaystyle \tan \widehat {BOx} = {2 \over 4} = {1 \over 2} \Rightarrow \widehat {BOx} \approx {26^0}34'\)
và \(\displaystyle \tan \widehat {AOx} = {4 \over 2} = 2 \Rightarrow \widehat {AOx} \approx {63^0}26'\)
Do đó \(\widehat {AOB} = \widehat {AOx} - \widehat {BOx} = {36^0}52'\)
Xét tam giác cân \(OAB\), ta có: \(\displaystyle \widehat {OAB} + \widehat {OBA}+\widehat {BOA}=180^0\)
\(\Rightarrow \widehat {OAB} + \widehat {OBA}=180^0-\widehat {BOA}\)
\(\Rightarrow 2.\widehat {OAB} =180^0-{{36}^0}52'\)
Nên \(\displaystyle \widehat {OAB} = {{{{180}^0} - {{36}^0}52'} \over 2} = {71^0}34'\)
Đề thi học kì 1 của các trường có lời giải – Mới nhất
SỰ PHÂN HÓA LÃNH THỔ
Bài 10. Thực hành: Vẽ và phân tích biểu đồ về sự thay đổi cơ cấu diện tích gieo trồng phân theo các loại cây, sự tăng trưởng đàn gia súc, gia cầm
Unit 12: My future career
ĐỊA LÍ DÂN CƯ