Đề bài
Viết phương trình mặt phẳng đi qua điểm M0(1;2;4), cắt các trục tọa độ Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho \(OA = OB = OC \ne 0.\)
Lời giải chi tiết
Mặt phẳng cần tìm đi qua điểm M0(1;2;4) có phương trình:
\(a(x-1)+b(y-2)+c(z-4)=0\) (1)
hay \(ax+by+cz=a+2b+4c\) với \(a + 2b + 4c \ne 0\) (theo giả thiết)
Từ đó, ta xác định được tọa độ các giao điểm A, B, C là:
\(\eqalign{ & A = \left( {{{a + 2b + 4c} \over a};0;0} \right)\cr&B = \left( {0;{{a + 2b + 4c} \over b};0} \right) \cr & C = \left( {0;0;{{a + 2b + 4c} \over c}} \right) \cr} \)
Vì OA = OB = OC nên \(O{A^2} = O{B^2} = O{C^2},\) do đó ta có
\({{{{\left( {a + 2b + 4c} \right)}^2}} \over {{a^2}}} = {{{{\left( {a + 2b + 4c} \right)}^2}} \over {{b^2}}} = {{{{\left( {a + 2b + 4c} \right)}^2}} \over {{c^2}}}\)
Hay \({a^2} = {b^2} = {c^2}\). Có những trường hợp sau xảy ra:
+) Nếu a, b, c cùng dấu thì \(a=b=c\) và phương trình (1) trở thành
\(x+y+z-7=0\).
+) Nếu a, b cùng dấu và khác dấu với c thì \(a=b=-c\). Phương trình (1) trở thành
\(x+y-z+1=0\).
+) Nếu a, c cùng dấu và khác dấu với c thì \(a=c=-b\). Phương trình (1) trở thành
\(x-y+z-3=0\).
+) Nếu b, c cùng dấu và khác dấu với a thì \(–a=b=c\). Phương trình (1) trở thành :
\(-x+y+z-5=0\).
Chương 3. Amin - Amino axit - Peptit - Protein
Chương 5. Sóng ánh sáng
Chương 4. Dao động và sóng điện từ
Chương 2. Tính quy luật của hiện tượng di truyền
ĐỀ THI THỬ THPT QUỐC GIA MÔN NGỮ VĂN