Bài 4 trang 119 sgk Hình học 11

Đề bài

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB =  a, BC= b, CC' = c\).

a) Tính khoảng cách từ \(B\) đến mặt phẳng \((ACC'A')\).

b) Tính khoảng cách giữa hai đường thẳng \(BB'\) và \(AC'\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Xác định và tính khoảng cách từ điểm B đến \((ACC'A')\) bằng cách kẻ \(BH \bot AC\).

Áp dụng hệ thức lượng trong tam giác vuông để tính khoảng cách vừa xác định được.

b) Xác định mặt phẳng chứa đường thẳng này và song song với đường thẳng kia. Đưa về bài toán xác định khoảng cách từ 1 điểm đến 1 mặt phẳng.

Lời giải chi tiết

 

a) Trong \((ABCD)\) kẻ \(BH \bot AC\,\,\left( {H \in AC} \right)\,\,\,\,\left( 1 \right)\)

Ta có: \(CC'\bot (ABCD)\Rightarrow CC'\bot BH\,\,\,\left( 2 \right)\)

Từ (1) và (2) suy ra \(BH\bot (ACC'A')\).

Áp dụng hệ thức lượng trong tam giác vuông \(ABC\) ta có:

\(\dfrac{1}{{B{H^2}}} = \dfrac{1}{{A{B^2}}} + \dfrac{1}{{B{C^2}}} \) \(= \dfrac{1}{{{a^2}}} + \dfrac{1}{{{b^2}}} = \dfrac{{{a^2} + {b^2}}}{{{a^2}{b^2}}}\)\( \Rightarrow BH = \dfrac{{ab}}{{\sqrt {{a^2} + {b^2}} }}\)

Cách khác:

Ta có:

\(\begin{array}{l}
\left\{ \begin{array}{l}
AA' \bot \left( {ABCD} \right)\\
AA' \subset \left( {ACC'A'} \right)
\end{array} \right.\\
\Rightarrow \left( {ACC'A'} \right) \bot \left( {ABCD} \right)\\
\left\{ \begin{array}{l}
\left( {ACC'A'} \right) \cap \left( {ABCD} \right) = AC\\
BH \subset \left( {ABCD} \right)\\
BH \bot AC
\end{array} \right.\\
\Rightarrow BH \bot \left( {ACC'A'} \right)\\
AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {b^2}} \\
BH.AC = AB.BC\\
\Rightarrow BH = \dfrac{{AB.BC}}{{AC}} = \dfrac{{ab}}{{\sqrt {{a^2} + {b^2}} }}
\end{array}\)

b) Ta có: \(AC'\subset (ACC'A') // BB'\)

\(\Rightarrow d(BB', AC') =d(BB';(ACC'A')\)\(= d(B,(ACC'A'))=BH.\)

\( \Rightarrow d\left( {BB';AC'} \right) = \dfrac{{ab}}{{\sqrt {{a^2} + {b^2}} }}\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved