Câu hỏi 4 trang 116 SGK Hình học 11

Đề bài

Cho hai mặt phẳng \((α)\) và \((β)\). Chứng minh rằng khoảng cách giữa hai mặt phẳng song song \((α)\) và \((β)\) là nhỏ nhất trong các khoảng cách từ một điểm bất kì của mặt phẳng này tới một điểm bất kì của mặt phẳng kia.

Phương pháp giải - Xem chi tiết

- Sử dụng lý thuyết: Khoảng cách giữa hai mặt phẳng song song bằng khoảng cách từ một điểm thuộc mặt phẳng này đến mặt phẳng kia.

- Sử dụng kết quả có được ở

Câu hỏi 2 trang 115 SGK Hình Học 11

.

Lời giải chi tiết

Hai mặt phẳng song song \((α)\) và \((β)\) nên có 1 đường thằng \(a ∈ (α)\) và \(a \, // \, (β)\)

⇒ Khoảng cách giữa đường thẳng \(a\) và mặt phẳng \((β)\) là bé nhất so với khoảng cách từ một điểm bất kì thuộc \(a\) tới một điểm bất kì thuộc mặt phẳng \((β).\)

Vậy khoảng cách giữa hai mặt phẳng song song \((α)\) và \((β)\) là nhỏ nhất trong các khoảng cách từ một điểm bất kì của mặt phẳng này tới một điểm bất kì của mặt phẳng kia.

 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved