Bài 1. Đại cương về đường thẳng và mặt phẳng
Bài 2. Hai đường thẳng chéo nhau và hai đường thẳng song song
Bài 3. Đường thẳng và mặt phẳng song song
Bài 4. Hai mặt phẳng song song
Bài 5. Phép chiếu song song. Hình biểu diễn của một hình không gian
Ôn tập chương II. Đường thẳng và mặt phẳng trong không gian. Quan hệ song song
Đề bài
Cho hình lăng trụ tứ giác \(ABCD.A’B’C’D’\) có \(E, F, M\) và \(N\) lần lượt là trung điểm của \(AC, BD, AC’\) và \(BD’\). Chứng minh \(MN = EF\).
Phương pháp giải - Xem chi tiết
Chứng minh \(MNFE\) là hình bình hành.
Lời giải chi tiết
Vì \(M\) là trung điểm của \(A’C\) và \(E\) là trung điểm của \(AC\) nên \(ME\) là đường trung bình của \(\Delta ACC' \Rightarrow \overrightarrow {EM} = {1 \over 2}\overrightarrow {CC'}\,\,\,\,\, (1)\)
Tương tự ta có \(FN\) là đường trung bình của tam giác \(BDB'\): \(\Rightarrow \overrightarrow {FN} = {1 \over 2}\overrightarrow {BB'} \,\,\,\,\,(2)\)
Ta lại có: \(\overrightarrow {AA'} = \overrightarrow {BB'}\,\,\,\,\,\, (3)\)
Từ (1), (2), (3) ⇒ \(\overrightarrow {EM} = \overrightarrow {FN}\) hay tứ giác \(MNFE\) là hình bình hành, do đó \(MN = EF\).
Bài 2. Xu hướng toàn cầu hóa, khu vực hóa kinh tế - Tập bản đồ Địa lí 11
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Sinh học lớp 11
Unit 4: Home
CHƯƠNG III: NHÓM CACBON
Chuyên đề 1. Lịch sử nghệ thuật truyền thống Việt Nam
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11