PHẦN GIẢI TÍCH - TOÁN 12

Bài 4 trang 140 sgk giải tích 12

Đề bài

Cho \(a, b, c \in \mathbb R\), \(a \ne 0\), \(z_1\) và \(z_2\) là hai nghiệm của phương trình \(a{z^2} + {\rm{ }}bz{\rm{ }} + {\rm{ }}c{\rm{ }} = {\rm{ }}0\)

Hãy tính \({z_1} + {z_2}\) và \({z_1} {z_2}\) theo các hệ số \(a, b, c\). 

 

Phương pháp giải - Xem chi tiết

+) Tính biệt thức \(\Delta  = {b^2} - 4ac\).

+) Chia các trường hợp của \(\Delta\):

TH1: \(\Delta  \ge 0\), sử dụng kết quả của định lí Vi-et đã biết.

TH2: \(\Delta  < 0\), gọi \(\delta\) là một căn bậc hai của \(\Delta\), suy ra các nghiệm phức của phương trình bậc hai và tính tổng, tích các nghiệm phức đó.

 

Lời giải chi tiết

Yêu cầu của bài toán này là kiểm chứng định lí Vi-ét đối với phương trình bậc hai trên tập số phức.

+) Trường hợp \(∆ ≥ 0\), theo định lí vi-ét ta có: \(\left\{ \begin{array}{l}{z_1} + {z_2} = - \dfrac{b}{a}\\{z_1}{z_2} = \dfrac{c}{a}\end{array} \right.\)

+) Trường hợp \(∆ < 0\),  gọi \(\delta\) là một căn bậc hai của \(\Delta\), khi đó các nghiệm của phương trình là: 

\(\begin{array}{l}{z_1} = \dfrac{{ - b + \delta }}{{2a}};\,\,{z_2} = \dfrac{{ - b - \delta }}{{2a}}\\\Rightarrow {z_1} + {z_2} = \dfrac{{ - b + \delta - b - \delta }}{{2a}} = \dfrac{{ - b}}{a}\\{z_1}{z_2} = \dfrac{{\left( { - b + \delta } \right)\left( { - b - \delta } \right)}}{{4{a^2}}} = \dfrac{{{b^2} - {\delta ^2}}}{{4{a^2}}}\\= \dfrac{{{b^2} - \left( {{b^2} - 4ac} \right)}}{{4{a^2}}} = \dfrac{{4ac}}{{4{a^2}}} = \dfrac{c}{a}\end{array}\)

Vậy kết quả của định lí Vi-et vẫn đúng trong trường hợp \(∆ < 0\).

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?

Chương bài liên quan

FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved