Đề bài
Tìm số nghiệm của các hệ phương trình sau:
a) \(\left\{ \begin{array}{l} - 2x + y = 3\\x + 2y = 1\end{array} \right.\)
b) \(\left\{ \begin{array}{l}4x - y = 8\\x - \dfrac{1}{4}y = 2\end{array} \right.\)
c) \(\left\{ \begin{array}{l}4x + 2y = 1\\2x + y = 2\end{array} \right.\)
Phương pháp giải - Xem chi tiết
Hệ phương trình \(\left\{ \begin{array}{l}{a_1}x + {b_1}y = {c_1}\\{a_2}x + {b_2}y = {c_2}\end{array} \right.\)
\({a_1}x + {b_1}y = {c_1} \)\(\;\Rightarrow y = \dfrac{{ - {a_1}}}{{{b_1}}}x + \dfrac{{{c_1}}}{{{b_1}}}\,\,\left( {{d_1}} \right);\)\(\,\,{a_2}x + {b_2}y = {c_2} \)
\(\Leftrightarrow y = \dfrac{{ - {a_2}}}{{{b_2}}}x + \dfrac{{{c_2}}}{{{b_2}}}\,\,\left( {{d_2}} \right)\).
Nhận xét vị trí tương đối của hai đường thẳng (d1) và (d2).
Số giao điểm của hai đường thẳng (d1) và (d2) cũng chính là số nghiệm của hệ phương trình \(\left\{ \begin{array}{l}{a_1}x + {b_1}y = {c_1}\\{a_2}x + {b_2}y = {c_2}\end{array} \right.\)
Lời giải chi tiết
\(a)\,\,\left\{ \begin{array}{l} - 2x + y = 3\\x + 2y = 1\end{array} \right.\)
\( - 2x + y = 3 \)\(\Leftrightarrow y = 2x + 3\,\,\left( {{d_1}} \right)\);
\(x + 2y = 1\)\(\Leftrightarrow 2y = - x + 1 \Leftrightarrow y = \dfrac{{ - 1}}{2}x + \dfrac{1}{2}\,\,\left( {{d_2}} \right)\)
Ta có: \({a_1} = 2;\,\,{a_2} = \dfrac{{ - 1}}{2} \Rightarrow {a_1} \ne {a_2} \Rightarrow \) Hai đường thẳng (d1) và (d2) cắt nhau tại 1 điểm.
Vậy hệ phương trình \(\left\{ \begin{array}{l} - 2x + y = 3\\x + 2y = 1\end{array} \right.\)có 1 nghiệm duy nhất.
b) \(\left\{ \begin{array}{l}4x - y = 8\\x - \dfrac{1}{4}y = 2\end{array} \right.\)
\(4x - y = 8 \Leftrightarrow y = 4x - 8\,\,\left( {{d_1}} \right)\) ;
\(x - \dfrac{1}{4}y = 2 \)\(\,\Leftrightarrow \dfrac{1}{4}y = x - 2 \Leftrightarrow y = 4x - 8\,\,\left( {{d_2}} \right)\)
Ta có : \(\left( {{d_1}} \right) \equiv \left( {{d_2}} \right) \Rightarrow \) Hai đường thẳng (d1) và (d2) cắt nhau tại vô số điểm.
Vậy hệ \(\left\{ \begin{array}{l}4x - y = 8\\x - \dfrac{1}{4}y = 2\end{array} \right.\)có vô số nghiệm.
c) \(\left\{ \begin{array}{l}4x + 2y = 1\\2x + y = 2\end{array} \right.\)
\(4x + 2y = 1 \)\(\,\Leftrightarrow 2y = - 4x + 1 \)\(\,\Leftrightarrow y = - 2x + \dfrac{1}{2}\,\,\left( {{d_1}} \right);\)
\(\,\,2x + y = 2 \Leftrightarrow y = - 2x + 2\,\,\left( {{d_2}} \right)\)
Ta có (d1) // (d2), do đó hai đường thẳng (d1) và (d2) không cắt nhau. Vậy hệ phương trình trên vô nghiệm.
Đề thi vào 10 môn Văn Bắc Kạn
Bài 15. Thương mại và du lịch
Đề thi vào 10 môn Toán Hà Nội
CHƯƠNG IV. ĐA PHƯƠNG TIỆN
Bài 29. Vùng Tây Nguyên (tiếp theo)