1. Nội dung câu hỏi
Giải các bất phương trình sau:
a) \({\left( {\frac{1}{3}} \right)^{2{\rm{x}} + 1}} \le 9\);
b) \({4^x} > {2^{x - 2}}\).
2. Phương pháp giải
Đưa 2 vế của bất phương trình về cùng cơ số.
3. Lời giải chi tiết
a) \({\left( {\frac{1}{3}} \right)^{2{\rm{x}} + 1}} \le 9 \Leftrightarrow {\left( {\frac{1}{3}} \right)^{2{\rm{x}} + 1}} \le {\left( {\frac{1}{3}} \right)^{ - 2}} \Leftrightarrow 2{\rm{x}} + 1 \ge - 2\) (do \(0 < \frac{1}{3} < 1\)) \( \Leftrightarrow 2{\rm{x}} > - 3 \Leftrightarrow x > - \frac{3}{2}\)
b) \({4^x} > {2^{x - 2}} \Leftrightarrow {\left( {{2^2}} \right)^x} > {2^{x - 2}} \Leftrightarrow {2^{2{\rm{x}}}} > {2^{x - 2}} \Leftrightarrow 2{\rm{x}} > x - 2\) (do \(2 > 1\)) \( \Leftrightarrow x > - 2\).
Chương IV. Dòng điện không đổi
Chương 5. Dẫn xuất halogen - alcohol - phenol
Dương phụ hành - Cao Bá Quát
Bài 17: Phenol
CHƯƠNG I. SỰ ĐIỆN LI
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11