PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Bài 4 trang 36 sgk Toán 9 tập 2

Đề bài

Cho hai hàm số: \(y = \dfrac{3}{2}{x^2},y =  - \dfrac{3}{2}{x^2}\). Điền vào những ô trống của các bảng sau rồi vẽ hai đồ thị trên cùng một mặt phẳng tọa độ.

Nhận xét về tính đối xứng của hai đồ thị đối với trục \(Ox\).

Phương pháp giải - Xem chi tiết

+) Tính giá trị của \(f(x_0)\) ta thay \(x=x_0\) vào hàm số \(y=f(x)\).

+) Cách vẽ đồ thị hàm số \(y=ax^2\).

Bước 1: Xác định các điểm \((1; a)\) và \((2; 4a)\) và các điểm đối xứng của chúng qua \(Oy\).  

Bước 2: Vẽ parabol đi qua gốc \(O(0;0)\) và các điểm trên.

Lời giải chi tiết

 

Thực hiện phép tính sau:

+) Đối với hàm số \(y=\dfrac{3}{2}x^2\):

\(x=-2 \Rightarrow y=\dfrac{3}{2}.(-2)^2=\dfrac{3}{2}.4=6\).

\(x=-1 \Rightarrow y=\dfrac{3}{2}.(-1)^2=\dfrac{3}{2}.1=\dfrac{3}{2}\).

\(x=0 \Rightarrow y=\dfrac{3}{2}.0=0\).

\(x=1 \Rightarrow y=\dfrac{3}{2}.1^2=\dfrac{3}{2}\).

\(x=2 \Rightarrow y=\dfrac{3}{2}.2^2=\dfrac{3}{2}.4=6\)

+) Đối với hàm số \(y=-\dfrac{3}{2}x^2\):

\(x=-2 \Rightarrow y=-\dfrac{3}{2}.(-2)^2=-\dfrac{3}{2}.4=-6\).

\(x=-1 \Rightarrow y=-\dfrac{3}{2}.(-1)^2=-\dfrac{3}{2}.1=-\dfrac{3}{2}\).

\(x=0 \Rightarrow y=-\dfrac{3}{2}.0=0\).

\(x=1 \Rightarrow y=-\dfrac{3}{2}.1^2=-\dfrac{3}{2}\).

\(x=2 \Rightarrow y=-\dfrac{3}{2}.2^2=-\dfrac{3}{2}.4=-6\)

Ta được bảng sau:

Vẽ đồ thị:

+) Vẽ đồ thị hàm số \(y=\dfrac{3}{2}x^2\)

Quan sát bảng trên ta thấy đồ thị đi qua các điểm: 

\(A(-2; 6);\ B{\left(-1; \dfrac{3}{2}\right)};\ O(0; 0);\ C{\left(1; \dfrac{3}{2}\right)};\ D(2; 6)\)

+) Vẽ đồ thị hàm số \(y=-\dfrac{3}{2}x^2\)

Quan sát bảng trên ta thấy đồ thị đi qua các điểm: 

\(A'(-2; -6);\ B'{\left(-1; -\dfrac{3}{2}\right)};\ O(0; 0);\)

\(\ C'{\left(1; -\dfrac{3}{2}\right)};\ D'(2; -6)\)

Nhận xét: Đồ thị của hai hàm số đối xứng với nhau qua trục \(Ox\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved