Đề bài
Viết phương trình mạt phẳng đi qua điểm M0(1;1;1), cắt các tia Ox, Oy, Oz tại A, B, C, sao cho thể tích của tứ diện OABC có giá trị nhỏ nhất.
Lời giải chi tiết
Giả sử \(A(a;0;0),B(0;b;0),C = (0;0;c)\) với \(a,b,c > 0\) và (P) là mặt phẳng phải tìm. Phương trình của (P) là :
\({x \over a} + {y \over b} + {z \over c} = 1.\)
Vì \({M_0} \in \left( P \right)\) nên \({1 \over a} + {1 \over b} + {1 \over c} = 1.\)
Thể tích của tứ diện OABC là : \({V_{OABC}} = {1 \over 6}abc.\)
Theo bất đẳng thức Cô-si :
\(1 = {1 \over a} + {1 \over b} + {1 \over c} \ge {3 \over {\root 3 \of {abc} }} \Leftrightarrow abc \ge 27\)
\( \Rightarrow {V_{OABC}} \ge {{27} \over 6} = {9 \over 2}\), dấu bằng xảy ra khi \(a=b=c=3.\)
Vậy VOABC nhỏ nhất bằng \({9 \over 2}\) khi \(a=b=c=3\), khi đó phương trình mặt phẳng (P) là \(x+y+z-3=0.\)
Đề kiểm tra 15 phút - Chương 6 – Hóa học 12
CHƯƠNG 2. TÍNH QUY LUẬT CỦA HIỆN TƯỢNG DI TRUYỀN
Tải 10 đề thi giữa kì 1 Hóa 12
Đề kiểm tra 45 phút kì II - Lớp 12
Tải 10 đề kiểm tra 15 phút - Chương 3 – Hóa học 12