PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

Bài 41 trang 27 SGK Toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Giải các hệ phương trình sau:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

LG a

\(\left\{ \matrix{x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1 \hfill \cr \left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1 \hfill \cr} \right.\)

Phương pháp giải:

Giải hệ phương trình bằng phương pháp thế

Lời giải chi tiết:

\(\left\{ \matrix{
x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1(1) \hfill \cr 
\left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1(2) \hfill \cr} \right.\) 

Ta giải hệ phương trình bằng phương pháp thế:

Từ (1) ta có  \(x = \displaystyle{{\left( {1 + \sqrt 3 } \right)y + 1} \over {\sqrt 5 }}(3)\)

Thế (3) vào (2), ta được:  

\(\eqalign{
& \left( {1 - \sqrt 3 } \right)\left[ {{{\left( {1 + \sqrt 3 } \right)y + 1} \over {\sqrt 5 }}} \right] + y\sqrt 5 = 1 \cr 
& \Leftrightarrow \left( {1 - \sqrt 3 } \right)\left( {1 + \sqrt 3 } \right)y + \left( {1 - \sqrt 3 } \right) + 5y = \sqrt 5 \cr 
& \Leftrightarrow - 2y + 5y = \sqrt 5 + \sqrt 3 - 1 \cr&\Leftrightarrow y = {{\sqrt 5 + \sqrt 3 - 1} \over 3} \cr} \)

Thế y vừa tìm được vào (3), ta được:

\(\begin{array}{l}
x = \dfrac{{\left( {1 + \sqrt 3 } \right)\left( {\sqrt 5  + \sqrt 3  - 1} \right) + 3}}{{3\sqrt 5 }} = \dfrac{{\sqrt 5  + \sqrt 3  - 1 + \sqrt {15}  + 3 - \sqrt 3  + 3}}{{3\sqrt 5 }}\\
 = \dfrac{{\sqrt 5  + \sqrt {15}  + 5}}{{3\sqrt 5 }} = \dfrac{{\sqrt 5 \left( {1 + \sqrt 3  + \sqrt 5 } \right)}}{{3\sqrt 5 }} = \dfrac{{1 + \sqrt 3  + \sqrt 5 }}{3}
\end{array}\)

Vậy hệ phương trình có nghiệm là: \(\displaystyle\left( {{{\sqrt 5  + \sqrt 3  + 1} \over 3};{{\sqrt 5  + \sqrt 3  - 1} \over 3}} \right)\)

LG b

LG b

\(\left\{ \begin{array}{l}\dfrac{{2x}}{{x + 1}} + \dfrac{y}{{y + 1}} = \sqrt 2 \\\dfrac{x}{{x + 1}} + \dfrac{{3y}}{{y + 1}} =  - 1\end{array} \right.\)

Phương pháp giải:

Giải hệ phương trình bằng phương pháp đặt ẩn phụ, phương pháp cộng đại số.

Lời giải chi tiết:

Giải hệ phương trình: (I) 

\(\left\{ \begin{array}{l}\dfrac{{2x}}{{x + 1}} + \dfrac{y}{{y + 1}} = \sqrt 2 \\\dfrac{x}{{x + 1}} + \dfrac{{3y}}{{y + 1}} =  - 1\end{array} \right.\)

Điều kiện: \(\displaystyle x \ne  - 1;y \ne  - 1\)

Ta giải hệ phương trình bằng phương pháp đặt ẩn phụ.

Đặt \(\displaystyle u = {x \over {x + 1}};v = {y \over {y + 1}}\)

Thay vào hệ (I), ta có hệ mới với ẩn là \(\displaystyle u\) và \(\displaystyle v\) ta được:

\(\displaystyle \left\{ \matrix{
2u + v = \sqrt 2 \,\,(1') \hfill \cr 
u + 3v = - 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
2u + v = \sqrt 2 (3) \hfill \cr 
- 2u - 6v = 2(4) \hfill \cr} \right.\)

Cộng (3) và (4) vế theo vế, ta được: \(\displaystyle - 5{\rm{v}} = 2 + \sqrt 2  \Leftrightarrow v = {{ - \left( {2 + \sqrt 2 } \right)} \over 5}\)

Thay \(\displaystyle v = {{ - \left( {2 + \sqrt 2 } \right)} \over 5}\) vào (1’), ta được:

\(\displaystyle 2u + v = \sqrt 2 \Leftrightarrow 2u  = -v+\sqrt 2\)

\(\displaystyle \Leftrightarrow 2u = {{2 + \sqrt 2 } \over 5} + \sqrt 2  \Leftrightarrow 2u = {{2 + \sqrt 2  + 5\sqrt 2 } \over 5} = {{2 + 6\sqrt 2 } \over 5}\)

\(\displaystyle \Leftrightarrow u = {{1 + 3\sqrt 2 } \over 5}\)

Với giá trị của \(\displaystyle u,v\) vừa tìm được, ta thế vào để tìm nghiệm \(\displaystyle x, y\).

Ta có:  

\(\displaystyle \left\{ \matrix{
{x \over {x + 1}} = {{1 + 3\sqrt 2 } \over 5} \hfill \cr 
{y \over {y + 1}} = {{ - 2 - \sqrt 2 } \over 5} \hfill \cr} \right.\)

\(\displaystyle \Leftrightarrow \left\{ \matrix{
x = \left( {x + 1} \right).\left( {{{1 + 3\sqrt 2 } \over 5}} \right) \hfill \cr 
y = \left( {y + 1} \right).{{{ - 2 - \sqrt 2 }  \over 5}} \hfill \cr} \right.\)

\(\displaystyle \Leftrightarrow \left\{ \matrix{
5{\rm{x}} = \left( {x + 1} \right)\left( {1 + 3\sqrt 2 } \right) \hfill \cr 
5y = \left( {y + 1} \right)\left( { - 2 - \sqrt 2 } \right) \hfill \cr} \right.\)

\(\displaystyle \begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
5x = x\left( {3\sqrt 2 + 1} \right) + 3\sqrt 2 + 1\\
5y = y\left( { - 2 - \sqrt 2 } \right) - 2 - \sqrt 2
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
5x - \left( {3\sqrt 2 + 1} \right)x = 3\sqrt 2 + 1\\
5y - \left( { - 2 - \sqrt 2 } \right)y = - 2 - \sqrt 2
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
\left( {4 - 3\sqrt 2 } \right)x = 3\sqrt 2 + 1\\
\left( {7 + \sqrt 2 } \right)y = - 2 - \sqrt 2
\end{array} \right.
\end{array}\)

\(\displaystyle \Leftrightarrow \left\{ \matrix{
x = {{1 + 3\sqrt 2 } \over {4 - 3\sqrt 2 }} \hfill \cr 
y = {{-2 - \sqrt 2 } \over {7 + \sqrt 2 }} \hfill \cr} \right.\) 

\(\displaystyle \begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
x = \dfrac{{\left( {3\sqrt 2 + 1} \right)\left( {4 + 3\sqrt 2 } \right)}}{{\left( {4 - 3\sqrt 2 } \right)\left( {4 + 3\sqrt 2 } \right)}}\\
y = \dfrac{{\left( { - 2 - \sqrt 2 } \right)\left( {7 - \sqrt 2 } \right)}}{{\left( {7 + \sqrt 2 } \right)\left( {7 - \sqrt 2 } \right)}}
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x = \dfrac{{ - 22 - 15\sqrt 2 }}{2}\,(tmđk)\\
y = \dfrac{{ - 12 - 5\sqrt 2 }}{{47}}\,(tmđk)
\end{array} \right.
\end{array}\) 

Vậy nghiệm của hệ phương trình là: \(\displaystyle \left( {\dfrac{{ - 22 - 15\sqrt 2 }}{2};\dfrac{{ - 12 - 5\sqrt 2 }}{{47}}} \right)\) 

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved