Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Giải hệ phương trình\(\left\{ \matrix{2{\rm{x}} - y = m \hfill \cr 4{\rm{x}} - {m^2}y = 2\sqrt 2 \hfill \cr} \right.\) trong mỗi trường hợp sau:
LG a
LG a
\(m = -\sqrt{2}\)
Phương pháp giải:
Cách 1: Giải hệ phương trình đã cho bằng phương pháp thế hoặc cộng đại số để tìm được \(x, y\) theo \(m.\) Sau đó thay từng giá trị m vào ta tìm được nghiệm cụ thể.
Cách 2: Thay từng giá trị \(m\) vào hệ phương trình rồi dùng phương pháp thế hoặc cộng đại số để giải hệ phương trình thu được.
Lời giải chi tiết:
(I) \(\left\{ \matrix{2{\rm{x}} - y = m(1) \hfill \cr 4{\rm{x}} - {m^2}y = 2\sqrt 2 (2) \hfill \cr} \right.\)
Ta có (1) ⇔ \(y = 2x – m\) (3)
Thế (3) vào (2), ta có:
\(4{\rm{x}} - {m^2}\left( {2{\rm{x}} - m} \right) = 2\sqrt 2\)
\(\Leftrightarrow 4.x - 2.m^2 . x + m^3 = 2\sqrt 2\)
\(\Leftrightarrow 4.x - 2.m^2 . x = 2\sqrt 2 - m^3\)
\( \Leftrightarrow 2\left( {2 - {m^2}} \right)x = 2\sqrt 2 - {m^3}(*)\)
Với \(m = - \sqrt{2}\). Thế vào phương trình (*), ta được:
\(2(2 – 2)x = 2\sqrt{2} + 2\sqrt{2} ⇔ 0x = 4\sqrt{2}\) (vô lý)
Vậy hệ phương trình đã cho vô nghiệm.
LG b
LG b
\(m = \sqrt{2}\)
Phương pháp giải:
Cách 1: Giải hệ phương trình đã cho bằng phương pháp thế hoặc cộng đại số để tìm được \(x, y\) theo \(m.\) Sau đó thay từng giá trị m vào ta tìm được nghiệm cụ thể.
Cách 2: Thay từng giá trị \(m\) vào hệ phương trình rồi dùng phương pháp thế hoặc cộng đại số để giải hệ phương trình thu được.
Lời giải chi tiết:
(I) \(\left\{ \matrix{2{\rm{x}} - y = m(1) \hfill \cr 4{\rm{x}} - {m^2}y = 2\sqrt 2 (2) \hfill \cr} \right.\)
Ta có (1) ⇔ \(y = 2x – m\) (3)
Thế (3) vào (2), ta có:
\(4{\rm{x}} - {m^2}\left( {2{\rm{x}} - m} \right) = 2\sqrt 2\)
\( \Leftrightarrow 2\left( {2 - {m^2}} \right)x = 2\sqrt 2 - {m^3}(*)\)
Với \(m = \sqrt{2}\). Thế vào phương trình (*), ta được:
\(2(2 – 2)x = 2\sqrt{2} - 2\sqrt{2} ⇔ 0x = 0\) (luôn đúng)
Phương trình trên nghiệm đúng với mọi x ∈ R, khi đó \(y = 2x – \sqrt 2\)
Vậy hệ trình này có vô số nghiệm dạng \((x;2x-\sqrt 2)\) với \(x\in R\).
LG c
LG c
\(m = 1\)
Phương pháp giải:
Cách 1: Giải hệ phương trình đã cho bằng phương pháp thế hoặc cộng đại số để tìm được \(x, y\) theo \(m.\) Sau đó thay từng giá trị m vào ta tìm được nghiệm cụ thể.
Cách 2: Thay từng giá trị \(m\) vào hệ phương trình rồi dùng phương pháp thế hoặc cộng đại số để giải hệ phương trình thu được.
Lời giải chi tiết:
(I) \(\left\{ \matrix{2{\rm{x}} - y = m(1) \hfill \cr 4{\rm{x}} - {m^2}y = 2\sqrt 2 (2) \hfill \cr} \right.\)
Ta có (1) ⇔ \(y = 2x – m\) (3)
Thế (3) vào (2), ta có:
\(4{\rm{x}} - {m^2}\left( {2{\rm{x}} - m} \right) = 2\sqrt 2\)
\( \Leftrightarrow 2\left( {2 - {m^2}} \right)x = 2\sqrt 2 - {m^3}(*)\)
Với \(m = 1\). Thế vào phương trình (*), ta được:
\(2.(2-1)x = 2\sqrt 2 - 1 \Leftrightarrow 2{\rm{x}} = 2\sqrt 2 - 1\)
\(\Leftrightarrow x = \displaystyle {{2\sqrt 2 - 1} \over 2}\)
Thay \(x\) vừa tìm được vào (3), ta có: \(y = 2\sqrt{2} – 2\)
Vậy hệ phương trình có một nghiệm duy nhất là: \(\left( \displaystyle {{{2\sqrt 2 - 1} \over 2};2\sqrt 2 - 2} \right)\)
Bài 1: Chí công vô tư
Đề thi vào 10 môn Văn Đà Nẵng
Đề thi vào 10 môn Văn Trà Vinh
PHẦN III: QUANG HỌC
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Hóa học lớp 9