PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 2

Bài 42 trang 78 Vở bài tập toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

Cho phương trình \({x^2} - x - 2 = 0\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c

LG a

LG a

Giải phương trình

Phương pháp giải:

Giải phương trình bằng cách sử dụng

+) Xét phương trình bậc hai: \(a{x^2} + bx + c = 0\,(a \ne 0).\)

 Nếu phương trình có \(a - b + c = 0\) thì phương trình có một nghiệm là \({x_1} =  - 1,\) nghiệm kia là \({x_2} =  - \dfrac{c}{a}.\)

Giải chi tiết:

Xét phương trình \({x^2} - x - 2 = 0\) có \(a - b + c = 1 - \left( { - 1} \right) + \left( { - 2} \right) = 0\) nên có hai nghiệm \({x_1} =  - 1;{x_2} = 2.\)

LG b

LG b

Vẽ hai đồ thị: \(y = {x^2}\) và \(y = x + 2\) trong cùng một hệ trục tọa độ

Phương pháp giải:

Lập bảng giá trị rồi vẽ hai đồ thị hàm số \(y = {x^2};y = x + 2\)

Giải chi tiết:

(h17)  

LG c

LG c

Chứng tỏ rằng hai nghiệm tìm được trong câu a) là hoành độ của các giao điểm của hai đồ thị. 

Phương pháp giải:

Thay hai nghiệm tìm được ở câu a) vào mỗi hàm số để so sánh các giá trị của \(y.\)

Giải chi tiết:

+ Thay \(x =  - 1\) vào đẳng thức \(y = {x^2}\) ta được \(y = {\left( { - 1} \right)^2} = 1\). Điều đó chứng tỏ điểm \(A\left( { - 1;1} \right)\) thuộc đồ thị  của hàm số \(y = {x^2}.\)

Tương tự thay \(x =  - 1\) vào đẳng thức \(y = x + 2\) ta được \(y =  - 1 + 2 = 1\). Điều đó chứng tỏ điểm \(A\left( { - 1;1} \right)\) thuộc đồ thị của hàm số \(y = x + 2.\)

Vậy \(A\left( {1; - 1} \right)\) là giao điểm của hai đồ thị hàm số và nghiệm \(x =  - 1\) là hoành độ của A.

+Tương tự thay \(x = 2\) vào hai đẳng thức \(y = {x^2}\) và \(y = x + 2\) ta đều được \(y = 4\). Điều đó chứng tỏ điểm \(B\left( {2;4} \right)\) thuộc đồ thị của hai hàm số \(y = x + 2\) và \(y = {x^2}.\)

Vậy \(B\left( {2;4} \right)\) là giao điểm của hai đồ thị hàm số và nghiệm \(x = 2\) là hoành độ của B.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved