Toán 10 tập 1 - Kết nối tri thức với cuộc sống

Bài 4.24 trang 70

Đề bài

Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A (-4; 1), B (2;4), C (2; -2)

a) Giải tam giác

b) Tìm tọa độ trực tâm H của tam giác ABC.

Phương pháp giải - Xem chi tiết

a) Độ dài vectơ \(\overrightarrow {AB} (x;y)\) là \(\left| {\overrightarrow {AB} } \right| = \sqrt {{x^2} + {y^2}} \)

b) Chỉ ra \(\overrightarrow {AH} .\overrightarrow {BC}  = \overrightarrow 0 \) và \(\overrightarrow {BH} .\overrightarrow {CA}  = \overrightarrow 0 \) từ đó tìm tọa độ của H.

Lời giải chi tiết

a) Ta có:

\(\left\{ \begin{array}{l}\overrightarrow {AB}  = (2 - ( - 4);4 - 1) = (6;3)\\\overrightarrow {BC}  = (2 - 2; - 2 - 4) = (0; - 6)\\\overrightarrow {AC}  = (2 - ( - 4); - 2 - 1) = (6; - 3)\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{6^2} + {3^2}}  = 3\sqrt 5 \\BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{0^2} + {{( - 6)}^2}}  = 6\\AC = \left| {\overrightarrow {CA} } \right| = \sqrt {{6^2} + {{( - 3)}^2}}  = 3\sqrt 5 .\end{array} \right.\)

Áp dụng định lí cosin cho tam giác ABC, ta có:

\(\cos \widehat A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}} = \frac{{{{\left( {3\sqrt 5 } \right)}^2} + {{\left( {3\sqrt 5 } \right)}^2} - {{\left( 6 \right)}^2}}}{{2.3\sqrt 5 .3\sqrt 5 }} = \frac{3}{5}\)\( \Rightarrow \widehat A \approx 53,{13^o}\)

\(\cos \widehat B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}} = \frac{{{{\left( 6 \right)}^2} + {{\left( {3\sqrt 5 } \right)}^2} - {{\left( {3\sqrt 5 } \right)}^2}}}{{2.6.3\sqrt 5 }} = \frac{{\sqrt 5 }}{5}\)\( \Rightarrow \widehat B \approx 63,{435^o}\)

\( \Rightarrow \widehat C \approx 63,{435^o}\)

Vậy tam giác ABC có: \(a = 6;b = 3\sqrt 5 ;c = 3\sqrt 5 \); \(\widehat A \approx 53,{13^o};\widehat B = \widehat C \approx 63,{435^o}.\)

b)

Gọi H có tọa độ (x; y)

\( \Rightarrow \left\{ \begin{array}{l}\overrightarrow {AH}  = (x - ( - 4);y - 1) = (x + 4;y - 1)\\\overrightarrow {BH}  = (x - 2;y - 4)\end{array} \right.\)

Lại có: H là trực tâm tam giác ABC

\( \Rightarrow AH \bot BC\) và \(BH \bot AC\)

\( \Rightarrow \left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = {90^o} \Leftrightarrow \cos \left( {\overrightarrow {AH} ,\overrightarrow {BC} } \right) = 0\) và \(\left( {\overrightarrow {BH} ,\overrightarrow {AC} } \right) = {90^o} \Leftrightarrow \cos \left( {\overrightarrow {BH} ,\overrightarrow {AC} } \right) = 0\)

Do đó \(\overrightarrow {AH} .\overrightarrow {BC}  = \overrightarrow 0 \) và \(\overrightarrow {BH} .\overrightarrow {AC}  = \overrightarrow 0 \).

Mà:  \(\overrightarrow {BC}  = (0; - 6)\)

\( \Rightarrow (x + 4).0 + (y - 1).( - 6) = 0 \Leftrightarrow  - 6.(y - 1) = 0 \Leftrightarrow y = 1.\)

Và \(\overrightarrow {AC}  = (6; - 3)\)

\(\begin{array}{l} \Rightarrow (x - 2).6 + (y - 4).( - 3) = 0\\ \Leftrightarrow 6x - 12 + ( - 3).( - 3) = 0\\ \Leftrightarrow 6x - 3 = 0\\ \Leftrightarrow x = \frac{1}{2}.\end{array}\)

Vậy H có tọa độ \(\left( {\frac{1}{2}}; 1 \right)\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved