PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 2

Bài 43 trang 79 Vở bài tập toán 9 tập 2

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e
LG f

Giải các phương trình:

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b
LG c
LG d
LG e
LG f

LG a

LG a

\(5{x^2} - 3x + 1 = 2x + 11\)

Phương pháp giải:

Đưa phương trình đã cho về dạng: \(ax^2+bx+c=0\,(a \ne 0)\) Sau đó sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để tìm nghiệm.

Lời giải chi tiết:

\(5{x^2} - 3x + 1 = 2x + 11\)

\(\begin{array}{l} \Leftrightarrow 5{x^2} - 3x + 1 - 2x - 11 = 0\\ \Leftrightarrow 5{x^2} - 5x - 10 = 0\\ \Leftrightarrow {x^2} - x - 2 = 0\end{array}\)

Phương trình trên có \(a - b + c = 1 - \left( { - 1} \right) + \left( { - 2} \right) = 0\) nên có hai nghiệm \({x_1} =  - 1;{x_2} = 2.\) 

LG b

LG b

\(\dfrac{{{x^2}}}{5} - \dfrac{{2x}}{3} = \dfrac{{x + 5}}{6}\)

Phương pháp giải:

Đưa phương trình đã cho về dạng: \(ax^2+bx+c=0\,(a \ne 0)\) Sau đó sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để tìm nghiệm.

Lời giải chi tiết:

\(\dfrac{{{x^2}}}{5} - \dfrac{{2x}}{3} = \dfrac{{x + 5}}{6}\)

\( \Leftrightarrow 6{x^2} - 20x = 5\left( {x + 5} \right)\)

\( \Leftrightarrow 6{x^2} - 25x - 25 = 0\)

Xét \(\Delta  = {\left( { - 25} \right)^2} - 4.6.\left( { - 25} \right) = 1225 > 0\)\( \Rightarrow \sqrt \Delta   = 35\)

Nên phương trình có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{25 + 35}}{{2.6}} = 5\\x = \dfrac{{25 - 35}}{{2.6}} = \dfrac{{ - 5}}{6}\end{array} \right.\)

LG c

LG c

\(\dfrac{x}{{x - 2}} = \dfrac{{10 - 2x}}{{{x^2} - 2x}}\) 

Phương pháp giải:

Sử dụng cách giải phương trình chứa ẩn ở mẫu

Chú ý: Phương trình tích \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)  

Lời giải chi tiết:

Điều kiện: \(x \ne \left\{ {0;2} \right\}\)

Ta có \(\dfrac{x}{{x - 2}} = \dfrac{{10 - 2x}}{{{x^2} - 2x}}\)

\( \Leftrightarrow \dfrac{x}{{x - 2}} = \dfrac{{10 - 2x}}{{x\left( {x - 2} \right)}}\)

\(\begin{array}{l} \Leftrightarrow \dfrac{{{x^2}}}{{x\left( {x - 2} \right)}} = \dfrac{{10 - 2x}}{{x\left( {x - 2} \right)}}\\ \Rightarrow {x^2} = 10 - 2x\\ \Leftrightarrow {x^2} + 2x - 10 = 0\end{array}\)

Phương trình trên có \(\Delta ' = {1^2} - 1.\left( { - 10} \right) = 11 > 0\)  nên có hai nghiệm \(\left[ \begin{array}{l}x =  - 1 + \sqrt {11} \\x =  - 1 - \sqrt {11} \end{array} \right.\)  (thỏa mãn)

Vậy phương trình đã cho có hai nghiệm \(x =  - 1 + \sqrt {11} ;x =  - 1 - \sqrt {11} \) .

LG d

LG d

\(\dfrac{{x + 0,5}}{{3x + 1}} = \dfrac{{7x + 2}}{{9{x^2} - 1}}\)

Phương pháp giải:

Sử dụng cách giải phương trình chứa ẩn ở mẫu

Chú ý: Phương trình tích \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)  

Lời giải chi tiết:

Điều kiện: \(x \ne \left\{ { - \dfrac{1}{3};\dfrac{1}{3}} \right\}\)

\(\dfrac{{x + 0,5}}{{3x + 1}} = \dfrac{{7x + 2}}{{9{x^2} - 1}}\) \( \Leftrightarrow \dfrac{{\left( {x + 0,5} \right)\left( {3x - 1} \right)}}{{\left( {3x + 1} \right)\left( {3x - 1} \right)}} = \dfrac{{7x + 2}}{{\left( {3x - 1} \right)\left( {3x + 1} \right)}}\)

Khử mẫu và biến đổi, ta được

\(\begin{array}{l} \Rightarrow 3{x^2} - x + 1,5x - 0,5 = 7x + 2\\ \Leftrightarrow 3{x^2} - 6,5x - 2,5 = 0\\ \Leftrightarrow 6{x^2} - 13x - 5 = 0\end{array}\)

Phương trình trên có \(\Delta  = {\left( { - 13} \right)^2} - 4.6.\left( { - 5} \right) = 289 > 0\)\( \Rightarrow \sqrt \Delta   = 17\)  nên có hai nghiệm \({x_1} = \dfrac{{13 + 17}}{{2.6}} = \dfrac{5}{2};\) \({x_2} = \dfrac{{13 - 17}}{{2.6}} =  - \dfrac{1}{3}\)

\({x_2} =  - \dfrac{1}{3}\) không thỏa mãn điều kiện của ẩn

Vậy phương trình có một nghiệm \({x} = \dfrac{5}{2}.\)

LG e

LG e

\(2\sqrt 3 {x^2} + x + 1 = \sqrt 3 \left( {x + 1} \right)\)

Phương pháp giải:

Đưa phương trình đã cho về dạng: \(ax^2+bx+c=0\,(a \ne 0)\) Sau đó sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để tìm nghiệm.

Lời giải chi tiết:

\(2\sqrt 3 {x^2} + x + 1 = \sqrt 3 \left( {x + 1} \right)\)

\(\begin{array}{l} \Leftrightarrow 2\sqrt 3 {x^2} + x + 1 - \sqrt 3 \left( {x + 1} \right) = 0\\ \Leftrightarrow 2\sqrt 3 {x^2} + x + 1 - \sqrt 3 x - \sqrt 3  = 0\\ \Leftrightarrow 2\sqrt 3 {x^2} + \left( {1 - \sqrt 3 } \right)x + 1 - \sqrt 3  = 0\end{array}\)

\(\Delta  = {\left( {1 - \sqrt 3 } \right)^2} - 4.2\sqrt 3 \left( {1 - \sqrt 3 } \right) \)\(= 4 - 2\sqrt 3  - 8\sqrt 3  + 24\)\( = 28 - 10\sqrt 3 \)\( = 25 - 2.5.\sqrt 3  + 3 \)\(= {\left( {5 - \sqrt 3 } \right)^2}\)\( \Rightarrow \sqrt \Delta   = 5 - \sqrt 3 \) 

\({x_1} = \dfrac{{\sqrt 3  - 1 + 5 - \sqrt 3 }}{{4\sqrt 3 }} \)\(= \dfrac{{\sqrt 3 }}{3};\)\({x_2} = \dfrac{{\sqrt 3  - 1 - 5 + \sqrt 3 }}{{4\sqrt 3 }} \)\(= \dfrac{{1 - \sqrt 3 }}{2}\)

LG f

LG f

\({x^2} + 2\sqrt 2 x + 4 = 3\left( {x + \sqrt 2 } \right)\)

Phương pháp giải:

Đưa phương trình đã cho về dạng: \(ax^2+bx+c=0\,(a \ne 0)\) Sau đó sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để tìm nghiệm.

Lời giải chi tiết:

\({x^2} + 2\sqrt 2 x + 4 = 3\left( {x + \sqrt 2 } \right)\)

\(\begin{array}{l} \Leftrightarrow {x^2} + 2\sqrt 2 x + 4 - 3\left( {x + \sqrt 2 } \right) = 0\\ \Leftrightarrow {x^2} + \left( {2\sqrt 2  - 3} \right)x + 4 - 3\sqrt 2  = 0\end{array}\)

Phương trình trên có \(\Delta  = {\left( {2\sqrt 2  - 3} \right)^2} - 4.1.\left( {4 - 3\sqrt 2 } \right) \)\(= 17 - 12\sqrt 2  - 16 + 12\sqrt 2  = 1 > 0\) nên phương trình có hai nghiệm \({x_1} = 2 - \sqrt 2 ;{x_2} = 1 - \sqrt 2 \)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved