Đề bài
Xác định các giá trị k và m để ba mặt phẳng sau đây cùng đi qua một đường thẳng :
\(5x+ky+4z+m=0\)
\(3x-7y+z-3=0\)
\(x-9y-2z+5=0.\)
Lời giải chi tiết
Để ba mặt phẳng đã cho cùng đi qua một đường thẳng, điều kiện cần và đủ là mặt phẳng \(5x + ky + 4z + m = 0\) phải chứa hai điểm phân biệt của đường thẳng \(\Delta \) với \(\Delta \) là giao tuyến của hai mặt phẳng còn lại.
Ta tìm hai điểm nào đó của \(\Delta \).
Cho y = 0, ta có \(\left\{ \matrix{ 3x + z = 3 \hfill \cr x - 2z = - 5 \hfill \cr} \right. \Rightarrow \left\{ \matrix{ x = {1 \over 7} \hfill \cr z = {{18} \over 7} \hfill \cr} \right.\)
\(\Rightarrow {M_1}\left( {{1 \over 7};0;{{18} \over 7}} \right) \in \Delta \)
Cho z = 0, ta có \(\left\{ \matrix{ 3x - 7y = 3 \hfill \cr x - 9y = - 5 \hfill \cr} \right. \Rightarrow \left\{ \matrix{ x = {{31} \over {10}} \hfill \cr y = {9 \over {10}} \hfill \cr} \right.\)
\(\Rightarrow {M_2}\left( {{{31} \over {10}};{9 \over {10}};0} \right) \in \Delta \)
Thay tọa độ điểm \({M_1},{M_2}\) vào phương trình mặt phẳng \(5x + ky + 4z + m = 0\) ta được hệ
\(\left\{ \matrix{ {5 \over 7} + {{72} \over 7} + m = 0 \hfill \cr {{155} \over {10}} + {{9k} \over {10}} + m = 0 \hfill \cr} \right. \Rightarrow k = - 5,m = - 11.\)
Đề kiểm tra 15 phút - Chương 6 – Hóa học 12
Bài 13. Thực hành: đọc bản đồ địa hình, điền vào lược đồ trống một số dãy núi và đỉnh núi
CHƯƠNG 10. HỆ SINH THÁI, SINH QUYỂN VÀ BẢO VỆ MÔI TRƯỜNG
Đề kiểm tra giữa học kì 2
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Sinh học lớp 12