Đề bài
Xác định các giá trị k và m để ba mặt phẳng sau đây cùng đi qua một đường thẳng :
\(5x+ky+4z+m=0\)
\(3x-7y+z-3=0\)
\(x-9y-2z+5=0.\)
Lời giải chi tiết
Để ba mặt phẳng đã cho cùng đi qua một đường thẳng, điều kiện cần và đủ là mặt phẳng \(5x + ky + 4z + m = 0\) phải chứa hai điểm phân biệt của đường thẳng \(\Delta \) với \(\Delta \) là giao tuyến của hai mặt phẳng còn lại.
Ta tìm hai điểm nào đó của \(\Delta \).
Cho y = 0, ta có \(\left\{ \matrix{ 3x + z = 3 \hfill \cr x - 2z = - 5 \hfill \cr} \right. \Rightarrow \left\{ \matrix{ x = {1 \over 7} \hfill \cr z = {{18} \over 7} \hfill \cr} \right.\)
\(\Rightarrow {M_1}\left( {{1 \over 7};0;{{18} \over 7}} \right) \in \Delta \)
Cho z = 0, ta có \(\left\{ \matrix{ 3x - 7y = 3 \hfill \cr x - 9y = - 5 \hfill \cr} \right. \Rightarrow \left\{ \matrix{ x = {{31} \over {10}} \hfill \cr y = {9 \over {10}} \hfill \cr} \right.\)
\(\Rightarrow {M_2}\left( {{{31} \over {10}};{9 \over {10}};0} \right) \in \Delta \)
Thay tọa độ điểm \({M_1},{M_2}\) vào phương trình mặt phẳng \(5x + ky + 4z + m = 0\) ta được hệ
\(\left\{ \matrix{ {5 \over 7} + {{72} \over 7} + m = 0 \hfill \cr {{155} \over {10}} + {{9k} \over {10}} + m = 0 \hfill \cr} \right. \Rightarrow k = - 5,m = - 11.\)
Unit 14. International Organizations
Tải 50 đề thi học kì 1 mới nhất có lời giải
Unit 7: Economic Reforms - Cải Cách Kinh Tế
Chương 1. Dao động cơ
PHẦN 2: LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NĂM 2000