Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Một vật có khối lượng 124 g và thể tích 15 \(c{m^3}\) là hợp kim của đồng và kẽm. Tính xem trong đó có bao nhiêu gam đồng và bao nhiêu gam kẽm, biết rằng cứ 89 g đồng thì có thể tích là 10cm3 và 7g kẽm có thể tích là 1cm3
Phương pháp giải - Xem chi tiết
Các bước giải bài toán bằng cách lập phương trình, hệ phương trình:
Bước 1: Lập phương trình (hệ phương trình)
- Chọn ẩn và đặt điều kiện thích hợp cho ẩn
- Biểu diễn các đại lượng chưa biết theo các ẩn và đại lượng đã biết
- Lập phương trình (hệ phương trình) biểu thị sự tương quan giữa các đại lượng.
Bước 2: giải phương trình và hệ phương trình vừa thu được
Bước 3: Kết luận
- Kiểm tra xem trong các nghiệm của hệ phương trình, nghiệm nào thỏa mãn điều kiện của ẩn.
- Kết luận bài toán.
Lời giải chi tiết
Gọi \(x;y\) lần lượt là số gam đồng và kẽm có trong vật đã cho (ĐK: \(0 < x;y < 124\))
Vì vật có khối lượng 124g nên ta có phương trình \(x + y = 124\) (1)
Biết cứ 89g đồng thì có thể tích là \(10c{m^3}\) nên 1g đồng có thể tích là \(\dfrac{{10}}{{89}}\,c{m^3}\)
Suy ra \(x\) gam đồng có thể tích là \(\dfrac{{10}}{{89}}x\,\,\left( {c{m^3}} \right)\)
Biết cứ 7g kẽm thì có thể tích là \(1c{m^3}\) nên 1g kẽm có thể tích là \(\dfrac{1}{7}\,c{m^3}\)
Suy ra \(y\) gam kẽm có thể tích là \(\dfrac{1}{7}y\,\,\left( {c{m^3}} \right)\)
Vì thể tích vật đã cho là \(15\,c{m^3}\) nên ta có phương trình \(\dfrac{{10}}{{89}}x + \dfrac{1}{7}y = 15\) (2)
Từ (1) và (2) ta có hệ phương trình \(\left\{ \begin{array}{l}x + y = 124\\\dfrac{{10}}{{89}}x + \dfrac{1}{7}y = 15\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}y = 124 - x\\70x + 89\left( {124 - x} \right) = 15.7.89\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}y = 124 - x\\ - 19x = - 1691\end{array} \right. \\ \Leftrightarrow \left\{ \begin{array}{l}x = 89\\y = 35\end{array} \right.\) (TM )
Vậy khối lượng đồng và kẽm trong vật đã cho lần lượt là 89g và 35g.
Bài 5. Thực hành: Phân tích và so sánh tháp dân số năm 1989 và năm 1999
ĐỊA LÍ DÂN CƯ
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Toán lớp 9
Tải 20 đề kiểm tra 1 tiết học kì 1 Văn 9
CHƯƠNG 2. KIM LOẠI