Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
So sánh:
LG a
LG a
\(3\sqrt 3 \) và \(\sqrt {12} \)
Phương pháp giải:
+ Đưa thừa số vào trong dấu căn rồi so sánh.
+ Sử dụng quy tắc đưa thừa số vào trong dấu căn:
\(A\sqrt{B}=\sqrt{A^2.B}\), nếu \(A \ge 0,\ B \ge 0\).
\(A\sqrt{B}=-\sqrt{A^2.B}\), nếu \(A < 0,\ B\ge 0\).
+) Sử dụng định lí so sánh hai căn bậc hai số học:
\(a < b \Leftrightarrow \sqrt{a} < \sqrt{b}\), với \(a,\ b \ge 0\).
Lời giải chi tiết:
Ta có:
\(3\sqrt{3}=\sqrt{3^2.3}=\sqrt{9.3}=\sqrt{27}\).
Vì \( 27>12 \Leftrightarrow \sqrt{27} > \sqrt{12}\)
\(\Leftrightarrow 3\sqrt{3} >\sqrt{12}\).
Vậy: \(3\sqrt{3}>\sqrt{12}\).
Cách khác:
\(\sqrt {12} = \sqrt {4.3} = \sqrt {{2^2}.3} = 2\sqrt 3 < 3\sqrt 3 \)
LG b
LG b
\(7\) và \(3\sqrt 5 \)
Phương pháp giải:
+ Đưa thừa số vào trong dấu căn rồi so sánh.
+ Sử dụng quy tắc đưa thừa số vào trong dấu căn:
\(A\sqrt{B}=\sqrt{A^2.B}\), nếu \(A \ge 0,\ B \ge 0\).
\(A\sqrt{B}=-\sqrt{A^2.B}\), nếu \(A < 0,\ B\ge 0\).
+) Sử dụng định lí so sánh hai căn bậc hai số học:
\(a < b \Leftrightarrow \sqrt{a} < \sqrt{b}\), với \(a,\ b \ge 0\).
Lời giải chi tiết:
Ta có:
\(7=\sqrt{7^2}=\sqrt{49}\).
\(3\sqrt{5}=\sqrt{3^2.5}=\sqrt{9.5}=\sqrt{45}\).
Vì \(49> 45 \Leftrightarrow \sqrt {49}> \sqrt {45} \Leftrightarrow 7 >3\sqrt 5\).
Vậy: \(7>3\sqrt{5}\).
LG c
LG c
\(\dfrac{1}{3}\sqrt{51}\) và \(\dfrac{1}{5}\sqrt{150};\)
Phương pháp giải:
+ Đưa thừa số vào trong dấu căn rồi so sánh.
+ Sử dụng quy tắc đưa thừa số vào trong dấu căn:
\(A\sqrt{B}=\sqrt{A^2.B}\), nếu \(A \ge 0,\ B \ge 0\).
\(A\sqrt{B}=-\sqrt{A^2.B}\), nếu \(A < 0,\ B\ge 0\).
+) Sử dụng định lí so sánh hai căn bậc hai số học:
\(a < b \Leftrightarrow \sqrt{a} < \sqrt{b}\), với \(a,\ b \ge 0\).
Lời giải chi tiết:
Ta có:
\(\dfrac{1}{3}\sqrt{51}= \sqrt {{\left(\dfrac{1}{3} \right)}^2.51 } = \sqrt {\dfrac{1}{9}.51} = \sqrt {\dfrac{51}{9}} \)
\(= \sqrt {\dfrac{3.17}{3.3}} = \sqrt {\dfrac{17}{3}} \).
\(\dfrac{1}{5}\sqrt{150}= \sqrt {{\left(\dfrac{1}{5} \right)}^2.150 } = \sqrt {\dfrac{1}{25}.150} = \sqrt {\dfrac{150}{25}} \)
\(= \sqrt {\dfrac{6.25}{25}} = \sqrt {6}=\sqrt{\dfrac{18}{3}} \).
Vì \( \dfrac{17}{3} <\dfrac{18}{3} \Leftrightarrow \sqrt{\dfrac{17}{3}} < \sqrt{\dfrac{18}{3}}\)
\(\Leftrightarrow \dfrac{1}{3}\sqrt{51} <\dfrac{1}{5}\sqrt{150}\).
Vậy: \( \dfrac{1}{3}\sqrt{51} <\dfrac{1}{5}\sqrt{150}\).
LG d
LG d
\(\dfrac{1}{2}\sqrt{6}\) và \(6\sqrt{\dfrac{1}{2}}\).
Phương pháp giải:
+ Đưa thừa số vào trong dấu căn rồi so sánh.
+ Sử dụng quy tắc đưa thừa số vào trong dấu căn:
\(A\sqrt{B}=\sqrt{A^2.B}\), nếu \(A \ge 0,\ B \ge 0\).
\(A\sqrt{B}=-\sqrt{A^2.B}\), nếu \(A < 0,\ B\ge 0\).
+) Sử dụng định lí so sánh hai căn bậc hai số học:
\(a < b \Leftrightarrow \sqrt{a} < \sqrt{b}\), với \(a,\ b \ge 0\).
Lời giải chi tiết:
Ta có:
\(\dfrac{1}{2}\sqrt{6}= \sqrt {{\left(\dfrac{1}{2} \right)}^2.6 } = \sqrt {\dfrac{1}{4}.6} = \sqrt {\dfrac{6}{4}} = \sqrt {\dfrac{2.3}{2.2}} \)
\(= \sqrt {\dfrac{3}{2}} \).
\(6\sqrt{\dfrac{1}{2}}=\sqrt{6^2.\dfrac{1}{2}}=\sqrt{36.\dfrac{1}{2}}=\sqrt{\dfrac{36}{2}}\).
Vì \( \dfrac{3}{2}<\dfrac{36}{2} \Leftrightarrow \sqrt{\dfrac{3}{2}}< \sqrt{\dfrac{36}{2}}\)
\(\Leftrightarrow \dfrac{1}{2}\sqrt{6} <6\sqrt{\dfrac{1}{2}}\).
Vậy: \(\dfrac{1}{2}\sqrt{6}<6\sqrt{\dfrac{1}{2}}\).
Bài 12: Quyền và nghĩa vụ của công dân trong hôn nhân
Bài 4: Bảo vệ hoà bình
PHẦN 1. LỊCH SỬ THẾ GIỚI HIỆN ĐẠI TỪ NĂM 1945 ĐẾN NAY
Tác giả - Tác phẩm học kì 1
CHƯƠNG 2. KIM LOẠI