Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Một mảnh đất hình chữ nhật có diện tích \(240\) m2. Nếu tăng chiều rộng \(3\) m và giảm chiều dài \(4\) m thì diện tích mảnh đất không đổi. Tính kích thước của mảnh đất.
Phương pháp giải - Xem chi tiết
Các bước giải bài toán bằng cách lập phương trình
Bước 1: Lập phương trình
1) Chọn ẩn và tìm điều kiện của ẩn (thông thường ẩn là đại lượng bài toán yêu cầu tìm)
2) Biểu thị các đại lượng chưa biết theo ẩn và các đại lượng đã biết
3) Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình, đối chiếu với điều kiện ban đầu và kết luận.
Chú ý: Diện tích hình chữ nhật bằng tích chiều dài với chiều rộng.
Lời giải chi tiết
Gọi chiều rộng của mảnh đất là \(x\) (m), \(x > 0\).
Vì diện tích của mảnh đất bằng \(240\) m2 nên chiều dài là: \(\dfrac{240}{x}\) (m)
Nếu tăng chiều rộng \(3\)m và giảm chiều dài \(4\)m thì mảnh đất mới có chiều rộng là \(x + 3\) (m), chiều dài là (\(\dfrac{240}{x}- 4)\) (m) và diện tích là: \((x + 3)(\dfrac{240}{x}-4)=240 - 4x + \dfrac{{720}}{x} - 12\) \((m^2) \)
Theo đầu bài ta có phương trình:
\(\begin{array}{l}
240 - 4x + \dfrac{{720}}{x} - 12 = 240\\
\Rightarrow - 4{x^2} + 720 - 12x = 0\\
\Leftrightarrow {x^2} + 3x - 180 = 0
\end{array}\)
Giải phương trình: \(\Delta = 3^2 + 720 = 729\), \(\sqrt{\Delta} = 27\)
Suy ra \({x_1} = \dfrac{{ - 3 + 27}}{2}= 12, \)\({x_2} = \dfrac{{ - 3 - 27}}{2}= -15\)
Vì \(x > 0\) nên \({x_2} = -15\) không thỏa mãn điều kiện của ẩn. Do đó chiều rộng là \(12\)m, chiều dài là: \(240 : 12 = 20\) (m)
Vậy mảnh đất có chiều rộng là \(12\)m, chiều dài là \(20\)m.
Bài 31
Đề thi vào 10 môn Văn Phú Thọ
Bài 34
Tổng hợp 50 đề thi vào 10 môn Toán
SBT tiếng Anh 9 mới tập 1