Bài 46 trang 63 SBT Hình học 12 Nâng cao

Đề bài

Xét hình chóp tứ giác đều S.ABCD có cạnh đáy và chiều cao thay đổi. Tìm hệ thức liên hệ giữa cạnh đáy và chiều cao của hình chóp để \({{{V_1}} \over {{V_2}}}\) đạt giá trị nhỏ nhất, ở đó \({V_1},{V_2}\) lần lượt là thể tích của các hình cầu ngoại tiếp và nội tiếp hình chóp.

Lời giải chi tiết

Gọi x là độ dài cạnh đáy, y là chiều cao của hình chóp; R, r lần lượt là bán kính mặt cầu ngoại tiếp và nội tiếp hình chóp thì dễ tính được \(R = {{{x^2} + 2{y^2}} \over {4y}},\)

\(r = {{xy} \over {x + \sqrt {{x^2} + 4{y^2}} }}\). Vậy

\({{{V_1}} \over {{V_2}}} = {\left( {{R \over r}} \right)^3} = {\left[ {{{({x^2} + 2{y^2})(x + \sqrt {{x^2} + 4{y^2}} )} \over {4x{y^2}}}} \right]^3}.\)

Từ đó \({{{V_1}} \over {{V_2}}}\) nhỏ nhất khi và chỉ khi \({R \over r}\) nhỏ nhất.

Gọi \(\varphi \) là góc giữa mặt bên và mặt đáy của hình chóp thì \(\varphi  = \widehat {SIH}\) (là trung điểm của BC ). Khi đó \(y = {x \over 2}\tan \varphi  \Rightarrow 4{y^2} = {x^2}{\tan ^2}\varphi ,\) từ đó

\(\eqalign{
& {R \over r} = {{\left( {{x^2} + {{{x^2}{{\tan }^2}\varphi } \over 2}} \right)\left( {x + \sqrt {{x^2} + {x^2}{{\tan }^2}\varphi } } \right)} \over {{x^3}{{\tan }^2}\varphi }} \cr 
& = {{\left( {2 + {{\tan }^2}\varphi } \right)\left( {1 + {1 \over {\cos \varphi }}} \right)} \over {2{{\tan }^2}\varphi }} \cr 
& = {{\left( {1 + {1 \over {{{\cos }^2}\varphi }}} \right)\left( {{{\cos \varphi + 1} \over {\cos \varphi }}} \right)} \over {2 \cdot {{1 - {{\cos }^2}\varphi } \over {{{\cos }^2}\varphi }}}} \cr 
& = {{1 + {{\cos }^2}\varphi } \over {2\cos \varphi \left( {1 - \cos \varphi } \right)}} = {1 \over 2} \cdot {{1 + {t^2}} \over {t\left( {1 - t} \right)}} \cr} \)

(với \(0 < t = \cos \varphi  < 1.\))

Như vậy, \({{{V_1}} \over {{V_2}}}\) nhỏ nhất khi và chỉ khi \(f(t) = {{1 + {t^2}} \over {t(1 - t)}}\) đạt giá trị nhỏ nhất (0< t < 1).

Ta có :

\(\eqalign{  & f'(t) = {{2t(1 - {t^2}) - (1 - 2t)(1 + {t^2})} \over {{{\left[ {t(1 - t)} \right]}^2}}}  \cr  &  = {{2{t^2} - 2{t^3} - 1 + 2t - {t^2} + 2{t^3}} \over {{{\left[ {t(1 - t)} \right]}^2}}} = {{{t^2} + 2t - 1} \over {{t^2}{{(1 - t)}^2}}}.  \cr  &  \cr} \)

\(f'(t) = 0 \Leftrightarrow {t^2} + 2t - 1 = 0 \Leftrightarrow t =  - 1 + \sqrt 2 \) (do 0< t <1).

Ta có bảng biến thiên

Vậy f(t) đạt giá trị nhỏ nhất tại \(t =  - 1 + \sqrt 2 \), tức là \(\cos \varphi  = -1 + \sqrt 2 \)

\(\eqalign{  &  \Leftrightarrow 1 + {\tan ^2}\varphi  = {1 \over {3 - 2\sqrt 2 }}  \cr  &  \Leftrightarrow {\tan ^2}\varphi  = {{1 - 3 + 2\sqrt 2 } \over {3 - 2\sqrt 2 }} = {{2\left( {\sqrt 2  - 1} \right)} \over {{{\left( {\sqrt 2  - 1} \right)}^2}}} \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= {2 \over {\sqrt 2  - 1}} = 2\left( {\sqrt 2  + 1} \right)  \cr  &  \Rightarrow \tan \varphi  = \sqrt {2\sqrt 2  + 2} . \cr} \)

Vậy hệ thức liên hệ giữa x và y là \(y = x{{\sqrt {2\sqrt 2  + 2} } \over 2}.\)

Khi đó \({{{V_1}} \over {{V_2}}}\) đạt giá trị nhỏ nhất.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved