Bài 48 trang 63 SBT Hình học 12 Nâng cao

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

Gọi r và h lần lượt là bán kính đáy và chiều cao của một hình nón. Kí hiệu \({V_1},{V_2}\) lần lượt là thể tích hình nón và thể tích hình cầu nội tiếp hình nón.

Lựa chọn câu hỏi để xem giải nhanh hơn
LG 1
LG 2

LG 1

Tỉ số \({{{V_1}} \over {{V_2}}}\) theo r, h.

Lời giải chi tiết:

Gọi (P) là mặt phẳng đi qua trục của hình nón thì (P) cắt hình nón theo tam giác cân SAB, cắt mặt cầu theo đường tròn lớn, đường tròn này nội tiếp tam giác cân.

Khi đó, bán kính \({r_1}\) của hình cầu nội tiếp hình nón được tính bởi công thức

\({r_1} = {{rh} \over {r + \sqrt {{h^2} + {r^2}} }}.\)

Thể tích hình nón là \({V_1} = {1 \over 3}\pi {r^2}h.\)

Thể tích hình cầu nội tiếp hình nón là \({V_2} = {{4\pi } \over 3}{\left( {{{rh} \over {r + \sqrt {{r^2} + {h^2}} }}} \right)^3}.\)

Vậy \({{{V_1}} \over {{V_2}}} = {1 \over 4}{{{{\left( {r + \sqrt {{r^2} + {h^2}} } \right)}^3}} \over {r{h^2}}}.\)

LG 2

Khi r và h thay đổi, tìm giá trị bé nhất của tỉ số \({{{V_1}} \over {{V_2}}}\).

Lời giải chi tiết:

\({{{V_1}} \over {{V_2}}} = {1 \over 4}{{{{\left( {\sqrt {1 + {{{h^2}} \over {{r^2}}}}  + 1} \right)}^3}} \over {{{{h^2}} \over {{r^2}}}}} = {1 \over 4}{{{{\left( {1 + \sqrt {1 + x} } \right)}^3}} \over x},\) ở đó \({{{h^2}} \over {{r^2}}} = x > 0.\)

Xét \(f(x) = {{{{\left( {1 + \sqrt {1 + x} } \right)}^3}} \over {4x}},f'(x) = {{{{\left( {\sqrt {1 + x}  + 1} \right)}^2}\left( {x - 2 - 2\sqrt {1 + x} } \right)} \over {4.2{x^2}\sqrt {x + 1} }}.\)

Vì \({{{{\left( {\sqrt {1 + x}  + 1} \right)}^2}} \over {4.2{x^2}\sqrt {x + 1} }} > 0\) nên khi xét dấu của f(x), ta chỉ cần xét dấu của \(g(x) = x - 2 - 2\sqrt {1 + x} .\) Ta có \(g'(x) = 1 - {1 \over {\sqrt {x + 1} }}.\)

Dễ thấy g’(x) > 0 vì khi x > 0 thì \({1 \over {\sqrt {x + 1} }} < 1,\) đồng thời g(x) = 0\( \Leftrightarrow x = 8.\)

Vậy g(x) là hàm tăng trên miền x > 0 và g(8) = 0 nên

với \(0 < x \le 8\) thì \(g(x) \le 0;\)

với \(8 < x <  + \infty \) thì g(x) > 0.

Bảng biến thiên của f(x)

Vậy giá trị bé nhất của \({{{V_1}} \over {{V_2}}}\) bằng 2.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved