Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Cho hai điểm \(A, B\) cố định. Từ \(A\) vẽ các tiếp tuyến với đường tròn tâm \(B\) bán kính không lớn hơn \(AB\). Tìm quỹ tích các tiếp điểm.
Phương pháp giải - Xem chi tiết
Với đoạn thẳng \(AB\) và góc \(\alpha\, \, (0^0 < \alpha < 180^0)\) cho trước thì quỹ tích các điểm \(M\) thỏa mãn \(\widehat{AMB}=\alpha\) là hai cung chứa góc \(\alpha\) dựng trên đoạn \(AB.\)
Lời giải chi tiết
Dự đoán: Quỹ tích là đường tròn đường kính AB.
+ Phần thuận:
Tiếp tuyến \(TA\) vuông góc với bán kính \(BT\) tại tiếp điểm \(T\).
Suy ra \( \widehat{ATB}=90^0\)
Do \(AB\) cố định nên quỹ tích của \(T\) là đường tròn đường kính \(AB\).
+ Phần đảo:
Lấy T thuộc đường tròn đường kính AB
\( \Rightarrow \widehat {ATB} = {90^0}\) ( Góc nội tiếp chắn nửa đường tròn)
⇒ AT ⊥ TB và BT < AB
⇒ AT tiếp xúc với đường tròn tâm B, bán kính BT < BA.
Kết luận: Quỹ tích các tiếp điểm là đường tròn đường kính AB.
Bài 13: Quyền tự do kinh doanh và nghĩa vụ đóng thuế
Bài giảng ôn luyện kiến thức giữa học kì 1 môn Lịch sử lớp 9
Đề thi vào 10 môn Văn Ninh Bình
Bài 1. Cộng đồng các dân tộc Việt Nam
Bài giảng ôn luyện kiến thức cuối học kì 2 môn Vật lí lớp 9