Bài 5 trang 114 sgk Hình học 11

Đề bài

Cho hình lập phương \(ABCD.A'B'C'D'\). Chứng minh rằng:

a) Mặt phẳng \((AB'C'D)\) vuông góc với mặt phẳng \((BCD'A')\);

b) Đường thẳng \(AC'\) vuông góc với mặt phẳng \((A'BD)\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

a) Chứng minh \(AB' \bot \left( {BCD'A'} \right)\)

Sử dụng lý thuyết: Nếu một đường thẳng vuông góc với một mặt phẳng thì mọi mặt phẳng chứa nó đều vuông góc với mặt phẳng đã cho.

b) Chứng minh \(AC' \bot BD;\,\,AC' \bot A'D\)

Sử dụng lý thuyết: Nếu một đường thẳng vuông góc với hai đường thẳng cắt nhau thì nó vuông góc với mặt phẳng chứa hai đường thẳng đó.

Lời giải chi tiết

a)

\(\left\{ \begin{array}{l}
BC \bot AB\\
BC \bot BB'
\end{array} \right. \Rightarrow BC \bot \left( {ABB'A'} \right)\)

\( \Rightarrow BC ⊥ AB'\);

\( \left\{ \begin{array}{l}
AB' \bot BC\\
AB' \bot BA'\\
BC \cap BA' = B\\
BC,BA' \subset \left( {BCD'A'} \right)
\end{array} \right. \) \(\Rightarrow AB' \bot \left( {BCD'A'} \right)\)

Ta có \(AB' ⊂ (AB'C'D) \Rightarrow (AB'C'D) ⊥ (BCD'A')\)

b) +) \(AA'\bot(ABCD) \Rightarrow AA'\bot BD\)

Mà  \(BD\bot AC\Rightarrow BD\bot (ACC'A')\)

\(AC'\subset(ACC'A')\) nên suy ra \(BD\bot AC'\)    (1)

+) \(AB\bot (ADD'A')\Rightarrow AB\bot A'D \)

Mà \(AD'\bot  A'D\Rightarrow  A'D\bot (ABC'D')\)

Ta có \(AC'\subset (ABC'D')\Rightarrow A'D\bot AC'\)      (2)

Từ (1) và (2) suy ra: \(AC' ⊥ (A'BD)\).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved