Bài 5 trang 40 SGK Toán 6 Cánh Diều Tập 1

Đề bài

Các lớp 6A, 6B, 6C, 6D, 6E có số học sinh tương ứng là 40, 45, 39, 44, 42. Hỏi:
a) Lớp nào có thể xếp thành 3 hàng với số học sinh ở mỗi hàng là như nhau?
b) Lớp nào có thể xếp thành 9 hàng với số học sinh ở mỗi hàng là như nhau?
c) Có thể xếp tất cả học sinh của năm lớp đó thành 3 hàng với số học sinh ở mỗi hàng là như nhau được không?
d) Có thể xếp tất cả học sinh của năm lớp đó thành 9 hàng với số học sinh ở mỗi hàng là như nhau được không?

Phương pháp giải - Xem chi tiết

a) Để số học sinh của một lớp có thể xếp thành ba hàng với số học sinh ở mỗi hàng là như nhau thì tổng số học sinh của lớp đó phải là số chia hết cho 3. 

b) Để số học sinh của một lớp có thể xếp thành chín hàng với số học sinh ở mỗi hàng là như nhau thì tổng số học sinh của lớp đó phải là số chia hết cho 9. 

c) Nếu tổng số học sinh chia hết cho 3 thì xếp được tất cả học sinh của năm lớp đó thành 3 hàng với số học sinh ở mỗi hàng là như nhau 

d) Nếu tổng số học sinh chia hết cho 9 thì xếp được tất cả học sinh của năm lớp đó thành 9 hàng với số học sinh ở mỗi hàng là như nhau

Lời giải chi tiết

a) Để số học sinh của một lớp có thể xếp thành ba hàng với số học sinh ở mỗi hàng là như nhau thì tổng số học sinh của lớp đó phải là số chia hết cho 3. 

Trong các số 40; 45; 39; 44; 42 thì:

+ Số 45 chia hết cho 3 (vì \(4 + 5 = 9 \vdots 3\))

+ Số 39 chia hết cho 3 (vì \(3 + 9 = 12 \vdots 3\))

+ Số 42 chia hết cho 3 (vì \(4 + 2 = 6 \vdots 3\))

Vậy các lớp 6B, 6C; 6E có thể xếp thành 3 hàng với số học sinh ở mỗi hàng là như nhau.

b) Để số học sinh của một lớp có thể xếp thành chín hàng với số học sinh ở mỗi hàng là như nhau thì tổng số học sinh của lớp đó phải là số chia hết cho 9. 

Trong các số 40; 45; 39; 44; 42 thì chỉ có số 45 chia hết cho 9 (vì \(4 + 5 = 9 \vdots 9\)).

Vậy chỉ có lớp 6B có thể xếp thành 9 hàng với số học sinh ở mỗi hàng là như nhau.

c) Tổng số học sinh của cả 5 lớp 6A, 6B, 6C, 6D, 6E là: 

40 + 45 + 39 + 44 + 42 = 210 (học sinh)

Ta có số 210 là số chia hết cho 3 (vì \(2 + 1 + 0 = 3 \vdots 3\))

Vậy ta có thể xếp tất cả học sinh của 5 lớp đó thành 3 hàng với số học sinh ở mỗi hàng là như nhau. 

d) Ta có số 210 là số không chia hết cho 9 (vì \(2 + 1 + 0 = 3 \not{\vdots} 9\))

Vậy ta không thể xếp tất cả học sinh của 5 lớp đó thành 9 hàng với số học sinh ở mỗi hàng là như nhau. 

 
Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved