PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

Bài 5 trang 45 sgk Toán 9 tập 1

Đề bài

a) Vẽ đồ thị hàm số \(y = x\) và \(y =2x\) trên cùng một mặt phẳng tọa độ \(Oxy\)  \((h.5)\).

b) Đường thẳng song song với trục \(Ox\) và cắt trục \(Oy\) tại điểm có tung độ \(y = 4\) lần lượt cắt các đường thẳng \(y = 2x,\ y = x\) tại hai điểm \(A\) và \(B\).

Tìm tọa độ của các điểm \(A,\ B\) và tính chu vi, diện tích của tam giác \(OAB\) theo đơn vị đo trên các trục tọa độ là xentimét.

Phương pháp giải - Xem chi tiết

a) Cách vẽ đồ thị hàm số \(y=ax,\ (a \ne 0)\):  Cho \(x=x_0 \Rightarrow y_0=ax_0\)

Đồ thị hàm số \(y=ax\, \, (a\neq 0)\) là đường thẳng đi qua gốc tọa độ và điểm \(A(x_0;y_0)\)

b) +) Đường thẳng song song với trục \(Ox\) cắt trục \(Oy\) tại điểm có tung độ \(y=b\) có phương trình đường thẳng là \(y=b.\)

+) Muốn tìm tọa độ giao điểm của hai đường thẳng \(y=ax\) và \(y=a'x\) ta giải phương trình \(ax=a'x\) tìm được hoành độ. Thay hoành độ vào một trong hai đường thẳng trên tìm được tung độ.

+) Sử dụng đinh lí Py - ta - go trong tam giác vuông: \(\Delta ABC\) vuông tại \(A\) thì \(AB^2+ AC^2 =BC^2\).

+) Chu vi tam giác: \(C_{∆OAB}= AB+BO+AO.\)

+) Diện tích \(\Delta ABC\) có đường cao \(h\)  và \(a\) là độ dài cạnh ứng với đường cao: \(S_{∆OAB}=\dfrac{1}{2}.h.a\)

Lời giải chi tiết

 

a) Xem hình trên và vẽ lại 

b)

+) Ta coi mỗi ô vuông trên hình \(5\) là một hình vuông có cạnh là \(1cm\).

    Từ hình vẽ ta xác định được: \(A(2; 4),\ B(4; 4)\).

+) Tính độ dài các cạnh của \(∆OAB\):

Dễ thấy \(AB = 4 - 2 = 2\)  \((cm)\).

Gọi \(C\) là điểm nằm trên trục tung, có tung độ là \(4\), ta có \(OC=4cm,AC=2cm;BC=4cm\)

Áp dụng định lý Py-ta-go cho các tam giác vuông \(OAC\) và \(OBC\), ta có:

\(\eqalign{
& OA = \sqrt {{AC^2} + {OC^2}} = \sqrt {{2^2} + {4^2}} = 2\sqrt 5 \left( {cm} \right) \cr 
& OB = \sqrt {{BC^2} + {OC^2}}= \sqrt {{4^2} + {4^2}} = 4\sqrt 2 \left( {cm} \right) \cr} \)

\(\Rightarrow\) Chu vi \(\Delta OAB\) là:

\(C_{\Delta OAB}=OA + OB + AB \)

              \(=2+ 2\sqrt 5 + 4\sqrt 2  \approx  12,13(cm)\)

+) Tính diện tích \(∆OAB\):

Cách 1:

\(\eqalign{
& {S_{\Delta OAB}} = {S_{\Delta OBC}} - {S_{\Delta OAC}} \cr 
& = {1 \over 2}OC.BC - {1 \over 2}OC.AC \cr 
& = {1 \over 2}{.4^2} - {1 \over 2}.4.2 = 8 - 4 = 4\left( {c{m^2}} \right) \cr} \)

Cách 2: 

\(∆OAB\) có đường cao ứng với cạnh \(AB\) là \(OC\).

\( \Rightarrow S_{∆OAB}=\dfrac{1}{2}.OC.AB=\dfrac{1}{2}.4.2=4\) \((cm^2)\)

Fqa.vn
Bình chọn:
5/5 (1 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved