1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền
2. Hệ thức giữa ba cạnh của tam giác vuông
3. Hệ thức giữa đường cao ứng với cạnh huyền và hình chiếu của hai cạnh góc vuông trên cạnh huyền
4. Hệ thức diện tích
5. Hệ thức giữa đường cao và hai cạnh góc vuông
Bài tập - Chủ đề 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
Luyện tập - Chủ đề 1. Một số hệ thức về cạnh và đường cao trong tam giác vuông
1. Khái niệm tỉ số lượng giác của một góc nhọn
2. Liên hệ giữa các tỉ số lượng giác của một góc
3. Tỉ số lượng giác của hai góc phụ nhau
4. Tỉ số lượng giác của hai góc đặc biệt
5. Tìm tỉ số lượng giác của các góc đặc biệt
Bài tập - Chủ đề 2. Tỉ số lượng giác của góc nhọn
Luyện tập - Chủ đề 2. Tỉ số lượng giác của góc nhọn
Đề bài
Cho tam giác ABC vuông tại A có diện tích \(37,5c{m^2},AB < AC\), đường cao AH có độ dài 6 cm. Tính các độ dài AB, AC.
Phương pháp giải - Xem chi tiết
Áp các cách tính diện tích và định lý Pythagore trong tam giác vuông để tìm ra hai mối quan hệ giữa AB, AC, từ đó rút thế để giải.
Lời giải chi tiết
Có \({S_{\Delta ABC}} = \dfrac{{AB.AC}}{2} \)
\(\Rightarrow AB.AC = 2.{S_{\Delta ABC}} = 2.37,5 = 75\\ \Rightarrow AB = \dfrac{{75}}{{AC}}\)
Mặt khác: \({S_{\Delta ABC}} = \dfrac{{AH.BC}}{2}\)
\(\Rightarrow BC = \dfrac{{2.{S_{\Delta ABC}}}}{{AH}} = \dfrac{{2.37,5}}{6} = \dfrac{{25}}{2}\) (cm)
Áp dụng định lý Pythagore trong tam giác ABC vuông tại A:
\(A{B^2} + A{C^2} = B{C^2} \\\Rightarrow \dfrac{{{{75}^2}}}{{A{C^2}}} + A{C^2} = {\left( {\dfrac{{25}}{2}} \right)^2}\\ \Leftrightarrow {75^2} + A{C^4} = {\left( {\dfrac{{25}}{2}} \right)^2}.A{C^2}\)
\( \Leftrightarrow \left[ \begin{array}{l}A{C^2} = 100\\A{C^2} = \dfrac{{225}}{4}\end{array} \right. \\\Leftrightarrow \left[ \begin{array}{l}AC = 10 \Rightarrow AB = \dfrac{{15}}{2}\\AC = \dfrac{{15}}{2} \Rightarrow AB = 10\end{array} \right.\,\,\)
Mà \(AB < AC \Rightarrow AC = 10;\,\,AB = \dfrac{{15}}{2}\)
Bài 6: Hợp tác cùng phát triển
Đề thi vào 10 môn Văn Lai Châu
Bài 12: Quyền và nghĩa vụ của công dân trong hôn nhân
Đề thi vào 10 môn Văn Thanh Hóa
Bài 28. Vùng Tây Nguyên