Câu hỏi 5 - Mục Bài tập trang 88

1. Nội dung câu hỏi

Cho hình chóp S.ABCD có SA \(\bot\) (ABC), BC \(\bot\) AB. Lấy hai điểm M, N lần lượt là trung điểm của SB, SC và điểm P nằm trên cạnh SA. Chứng minh rằng tam giác MNP là tam giác vuông.


2. Phương pháp giải

Dựa vào định lí vừa học để chứng minh.

 

3. Lời giải chi tiết

Vì SA \(\bot\) (ABCD) nên AB là hình chiếu của SB trên mặt phẳng (ABCD). Mà BC \(\bot\) AB nên theo định lí ba đường vuông góc ta có SB \(\bot\) BC. 

Mà BC // MN (do MN là đường trung bình của tam giác SBC)

=> SB \(\bot\) MN. (1)

Ta có SA \(\bot\) (ABC) => SA \(\bot\) BC, mà BC // MN => SA \(\bot\) MN. (2)

Từ (1) và (2) suy ra MN \(\bot\) (SAB) => MN \(\bot\) MP hay tam giác MNP là tam giác vuông tại M.

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved