1. Nội dung câu hỏi
Trong Hình 43, xét các góc nhị diện có góc phẳng nhị diện tương ứng là \(\widehat B,\widehat C,\widehat D,\widehat E\) trong cùng mặt phẳng. Lục giác \(ABCDEG\) nằm trong mặt phẳng đó có \(AB = GE = 2{\rm{ }}m,BC = DE,\widehat A = \widehat G = {90^ \circ },\widehat B = \widehat E = x,\widehat C = \widehat D = y\). Biết rằng khoảng cách từ \(C\) và \({\rm{D}}\) đến \({\rm{AG}}\) là \(4{\rm{ }}m\), \(AG = 12{\rm{ }}m,CD = 1{\rm{ }}m\). Tìm x, y (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).
2. Phương pháp giải
Sử dụng công thức tính thể tích khối chóp cụt đều: \(V = \frac{1}{3}h\left( {S + \sqrt {SS'} + S'} \right)\).
3. Lời giải chi tiết
Kẻ \(CH \bot AG\left( {H \in AG} \right),DK \bot AG\left( {K \in AG} \right)\)
Gọi \(I = BE \cap CH,J = BE \cap DK\).
\(ABEG\) là hình chữ nhật \( \Rightarrow BE = AB = 12\)
\(C{\rm{D}}KH,C{\rm{D}}JI\) là hình chữ nhật \( \Rightarrow HK = IJ = C{\rm{D}} = 1\)
\(ABIH,EGKJ\) là hình chữ nhật \( \Rightarrow IH = JK = AB = 2\)
\(AH = GK = BI = EJ = \frac{{AG - HK}}{2} = \frac{{12 - 1}}{2} = 5,5\)
\(CH = d\left( {C,AG} \right) = 4 \Rightarrow CI = CH - IH = 4 - 2 = 2\)
\(\Delta BCI\) vuông tại \(I\)\( \Rightarrow \tan \widehat {CBI} = \frac{{CI}}{{BI}} = \frac{2}{{5,5}} = \frac{4}{{11}} \Rightarrow \widehat {CBI} \approx 19,{98^ \circ }\)
\(\begin{array}{l} \Rightarrow x = \widehat {ABI} + \widehat {CBI} = {90^ \circ } + 19,{98^ \circ } = 110,{0^ \circ }\\ \Rightarrow y = {180^ \circ } - x = {180^ \circ } - 110,{0^ \circ } = 70,{0^ \circ }\end{array}\).
Unit 1: A long and healthy life
Chuyên đề 1: Lịch sử nghệ thuật truyền thống Việt Nam
Bài 8: Hợp chất hữu cơ và hóa học hữu cơ
Bài 2. Luật Nghĩa vụ quân sự và trách nhiệm của học sinh
Bài 6. Tiết 2: Kinh tế Hoa Kì - Tập bản đồ Địa lí 11
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11