Bài 1. Phương trình bậc nhất hai ẩn
Bài 2. Hệ hai phương trình bậc nhất hai ẩn
Bài 3. Giải hệ phương trình bằng phương pháp thế
Bài 4. Giải hệ phương trình bằng phương pháp cộng đại số.
Bài 5. Giải bài toán bằng cách lập hệ phương trình
Bài 6.Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)
Ôn tập chương III - Hệ hai phương trình bậc nhất hai ẩn
Đề kiểm 15 phút - Chương 3 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số 9
Bài 1. Hàm số y = ax^2 (a ≠ 0)
Bài 2. Đồ thị của hàm số y = ax^2 (a ≠ 0).
Bài 3. Phương trình bậc hai một ẩn
Bài 4. Công thức nghiệm của phương trình bậc hai
Bài 5. Công thức nghiệm thu gọn
Bài 6. Hệ thức Vi-ét và ứng dụng
Bài 7. Phương trình quy về phương trình bậc hai
Bài 8. Giải bài toán bằng cách lập phương trình
Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn
Đề kiểm tra 15 phút - Chương 4 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số 9
Đề bài
Khoảng cách giữa hai bên sông A và B là \(30\) km. Một canô đi từ bến A đến bến B, nghỉ \(40\) phút ở bến B rồi quay lại bến A. Kể từ lúc khởi hành đến khi về tới bến A hết tất cả \(6\) giờ. Hãy tìm vận tốc của canô trong nước yên lặng, biết rằng vận tốc của nước chảy là \(3\) km/h.
Phương pháp giải - Xem chi tiết
Các bước giải bài toán bằng cách lập phương trình
Bước 1: Lập phương trình
1) Chọn ẩn và tìm điều kiện của ẩn (thông thường ẩn là đại lượng bài toán yêu cầu tìm)
2) Biểu thị các đại lượng chưa biết theo ẩn và các đại lượng đã biết
3) Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải phương trình, đối chiếu với điều kiện ban đầu và kết luận.
Chú ý: Đối với chuyển động của ca nô thì
\({v_{xd}} = {v_t} + {v_n};\,{v_{nd}} = {v_t} - {v_n}\)
Trong đó \({v_{xd}}\) là vận tốc ca nô khi xuôi dòng; \({v_{nd}}\) là vận tốc ca nô khi ngược dòng
\({v_t}\) là vận tốc thực của ca nô khi nước yên lặng; \({v_n}\) là vận tốc chảy của dòng nước
Lời giải chi tiết
Gọi vận tốc thực của canô (khi nước yên lặng) là \(x\) (km/h) , nên vận tốc khi đi xuôi dòng là: \(x + 3\) (km/h) và vận tốc khi ngược dòng là: \(x - 3\) (km/h), \(x > 3\).
Thời gian xuôi dòng là: \(\dfrac{30}{x + 3}\) (giờ)
Thời gian ngược dòng là: \(\dfrac{30}{x - 3}\) (giờ)
Nghỉ lại \(40\) phút hay \(\dfrac{2}{3}\) giờ ở B.
Theo đầu bài kể từ khi khời hành đến khi về tới bến A hết tất cả \(6\) giờ nên ta có phương trình: \(\dfrac{30}{x+ 3}+ \dfrac{30}{x- 3}+ \dfrac{2}{3} = 6\)
\(\begin{array}{l}
\Leftrightarrow \dfrac{{30}}{{x + 3}} + \dfrac{{30}}{{x - 3}} = \dfrac{{16}}{3}\\
\Rightarrow 30.3\left( {x - 3} \right) + 30.3.\left( {x + 3} \right) = 16.\left( {x - 3} \right)\left( {x + 3} \right)\\
\Leftrightarrow 90x - 270 + 90x + 270 = 16\left( {{x^2} - 9} \right)\\
\Leftrightarrow 16{x^2} - 180x - 144 = 0\\
\Leftrightarrow 4{x^2} - 45x - 36 = 0
\end{array}\)
\(\Delta = 2025 + 576 = 2601 >0, \sqrt{\Delta} = 51\)
Suy ra \({x_1} = 12, {x_2} = -\dfrac{3}{4}\) (loại)
Vậy vận tốc của canô trong nước yên lặng là \(12\) km/h.
ĐỊA LÍ KINH TẾ
ĐỊA LÍ ĐỊA PHƯƠNG
Bài 18: Sống có đạo đức và tuân theo pháp luật
Bài 13: Quyền tự do kinh doanh và nghĩa vụ đóng thuế
Bài 28