Bài 1. Mở đầu về phương trình
Bài 2. Phương trình bậc nhất một ẩn và cách giải
Bài 3. Phương trình đưa được về dạng ax + b = 0
Bài 4. Phương trình tích
Bài 5. Phương trình chứa ẩn ở mẫu
Bài 6. Giải bài toán bằng cách lập phương trình
Bài 7. Giải bài toán bằng cách lập phương trình (tiếp)
Ôn tập chương III. Phương trình bậc nhất một ẩn
Đề bài
Giải phương trình:
\(\dfrac{{x + 1}}{9} + \dfrac{{x + 2}}{8} = \dfrac{{x + 3}}{7} + \dfrac{{x + 4}}{6}\)
Phương pháp giải - Xem chi tiết
Cộng \(2\) vào hai vế của phương trình sau đó giải phương trình mới để tìm \( x\).
Lời giải chi tiết
Cộng \(2\) vào hai vế của phương trình, ta được:
\(\dfrac{{x + 1}}{9} + 1 + \dfrac{{x + 2}}{8} + 1 = \dfrac{{x + 3}}{7} + 1\)\(\, + \dfrac{{x + 4}}{6} + 1\)
\( \Leftrightarrow \dfrac{{x + 10}}{9} + \dfrac{{x + 10}}{8} = \dfrac{{x + 10}}{7} \)\(\,+ \dfrac{{x + 10}}{6}\)
\( \Leftrightarrow \dfrac{{x + 10}}{9} + \dfrac{{x + 10}}{8} - \dfrac{{x + 10}}{7}\)\(\, - \dfrac{{x + 10}}{6}=0\)
\( \Leftrightarrow \left( {x + 10} \right)\left( {\dfrac{1}{9} + \dfrac{1}{8} - \dfrac{1}{7} - \dfrac{1}{6}} \right) = 0{\kern 1pt}\)\( \;(*)\)
Vì \(\dfrac{1}{9} < \dfrac{1}{7};\dfrac{1}{8} < \dfrac{1}{6}\) nên \(\dfrac{1}{9} + \dfrac{1}{8} - \dfrac{1}{7} - \dfrac{1}{6} < 0\)
\((*) \Leftrightarrow x+10 = 0 \)
\(\Leftrightarrow x= -10 \)
Vậy phương trình có nghiệm duy nhất \(x = -10\).
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8