Cho hàm số \(\displaystyle y = {{x - 2} \over {x + m - 1}}\)
LG a
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số khi m = 2.
Phương pháp giải:
Thay giá trị \(m=2\) vào công thức hàm số sau đó khảo sát và vẽ đồ thị hàm số theo các bước đã được học.
Lời giải chi tiết:
Khi \(m = 2\), ta có hàm số: \(\displaystyle y = {{x - 2} \over {x + 1}}\)
- Tập xác định: \((-∞; -1) ∪ (-1; +∞).\)
- Sự biến thiên:
Ta có: \(\displaystyle y' = {3 \over {{{(x + 1)}^2}}} > 0,\forall x \in ( - \infty , - 1) \cup (-1, + \infty )\) nên hàm số đồng biến trên hai khoảng này.
- Hàm số không có cực trị
- Giới hạn tại vô cực và tiệm cận ngang
\(\displaystyle \mathop {\lim }\limits_{x \to -1^- } y = \mathop {\lim }\limits_{x \to -1^- } {{x - 2} \over {x + 1}} = +\infty;\mathop {\lim }\limits_{x \to -1^+ } y = \mathop {\lim }\limits_{x \to -1^+ } {{x - 2} \over {x + 1}} = -\infty \)
\( \Rightarrow x = -1\) là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to \pm \infty } y = \mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{x - 2}}{{x + 1}} = 1.\)
\(\Rightarrow y = 1\) là tiệm cận ngang của đồ thị hàm số.
Bảng biến thiên:
Đồ thị hàm số:
Đồ thị cắt trục tung tại điểm có tung độ \(y = -2\), cắt trục hoành tại điểm có hoành độ \(x = 2.\)
LG b
b) Viết phương trình tiếp tuyến d của đồ thị (C) tại điểm có hoành độ a ≠ -1.
Phương pháp giải:
Phương trình tiếp tuyến của đồ thị hàm số \(y=f(x)\) tại điểm \(x=x_0\) có công thức: \(y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}.\)
Lời giải chi tiết:
Tiếp tuyến của đồ thị (C) tại điểm M có hoành độ \(a≠-1\) có phương trình: \(\displaystyle y = y'(a)(x - a) + y(a) = {3 \over {{{(a + 1)}^2}}}(x - a) + {{a - 2} \over {a + 1}}.\)
Bài 22. Vấn đề phát triển nông nghiệp
Unit 6. Endangered Species
CHƯƠNG 4. POLIME VÀ VẬT LIỆU POLIME
PHẦN HAI. LỊCH SỬ VIỆT NAM TỪ NĂM 1919 ĐẾN NĂM 2000
Chương 2. Cacbohidrat