Đề bài
Cho hình chóp \(S.ABC\). Gọi \(A'\) và \(B'\) lần lượt là trung điểm của \(SA\) và \(SB\). Khi đó tỉ số thể tích của hai khối chóp \(S.A'B'C'\) và \(S.ABC\) bằng:
(A) \(\displaystyle {1 \over 2}\) (B) \(\displaystyle {1 \over 3}\)
(C) \(\displaystyle {1 \over 4}\) (D) \(\displaystyle {1 \over 8}\)
Phương pháp giải - Xem chi tiết
Sử dụng kết quả sau:
Cho khối chóp \(S.ABC\), trên các cạnh \(SA, SB, SC\) lấy các điểm \(A', B', C'\). Khi đó ta có: \[\frac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \frac{{SA'}}{{SA}}.\frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}}\]
Lưu ý công thức trên chỉ được phép dùng đối với chóp tam giác, khi không là chóp tam giác phải sử dụng phân chia và lắp ghép các khối đa diện trước khi sử dụng công thức.
Lời giải chi tiết
Ta có: \(\displaystyle{{{V_{S.A'B'C}}} \over {{V_{S.ABC}}}} = {{SA'} \over {SA}}.{{SB'} \over {SB}}.{{SC} \over {SC}} = {1 \over 2}.{1 \over 2}.1 = {1 \over 4}\)
Chọn (C).
CHƯƠNG 3. DI TRUYỀN HỌC QUẦN THỂ
Chương 7. Sự phát sinh và phát triển sự sống trên Trái Đất
Review 3
Chương 6. Lượng tử ánh sáng
Đề kiểm tra 45 phút kì II - Lớp 12