1. Nội dung câu hỏi
Hình nào vẽ đồ thị của hàm số \(y = {\log _{\frac{1}{2}}}x\)?
2. Phương pháp giải
Dựa vào tính chất của đồ thị hàm số \(y = {\log _a}x\).
3. Lời giải chi tiết
‒ Hàm số \(y = {\log _{\frac{1}{2}}}x\) nghịch biến trên \(\left( {0; + \infty } \right)\). Loại A, C.
‒ Giới hạn: \(\mathop {\lim }\limits_{x \to + \infty } {\log _{\frac{1}{2}}}x = - \infty ;\mathop {\lim }\limits_{x \to {0^ + }} {\log _{\frac{1}{2}}}x = + \infty \). Loại B.
Chọn D.
Bài 6. Giới thiệu một số loại súng bộ binh, thuốc nổ, vật cản và vũ khí tự tạo
Đề kiểm tra giữa học kì 1
ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 11
Chương 6: Hợp chất carbonyl - Carboxylic acid
Chủ nghĩa yêu nước trong văn thơ Nguyễn Đình Chiểu
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11