Vẽ đồ thị các hàm số sau:
a) \(y = 2{x^2} + 4x - 1\)
b) \(y = - {x^2} + 2x + 3\)
c) \(y = - 3{x^2} + 6x\)
d) \(y = 2{x^2} - 5\)
LG a
a) \(y = 2{x^2} + 4x - 1\)
Phương pháp giải:
+ Xác định đỉnh \(S(\frac{{ - b}}{{2a}};f(\frac{{ - b}}{{2a}}))\)
+ Trục đối xứng \(x = \frac{{ - b}}{{2a}}\)
+ Bề lõm: quay lên trên (nếu a>0)
+ Giao với trục tung tại điểm có tọa độ (0; c).
Lời giải chi tiết:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = 2{x^2} + 4x - 1\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 4}}{{2.2}} = - 1;{y_S} = 2.{( - 1)^2} + 4.( - 1) - 1 = - 3.\)
+ Có trục đối xứng là đường thẳng \(x = - 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay lên trên vì \(a = 2 > 0\)
+ Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua điểm có tọa độ (0; -1).
Ta vẽ được đồ thị như hình dưới.
LG b
b) \(y = - {x^2} + 2x + 3\)
Phương pháp giải:
+ Xác định đỉnh \(S(\frac{{ - b}}{{2a}};f(\frac{{ - b}}{{2a}}))\)
+ Trục đối xứng \(x = \frac{{ - b}}{{2a}}\)
+ Bề lõm: quay xuống dưới (a=-1<0).
+ Giao với trục tung tại điểm có tọa độ (0; c).
Lời giải chi tiết:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = - {x^2} + 2x + 3\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 2}}{{2.( - 1)}} = 1;{y_S} = - {1^2} + 2.1 + 3 = 4.\)
+ Có trục đối xứng là đường thẳng \(x = 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay xuống dưới vì \(a = - 1 < 0\)
+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).
Ta vẽ được đồ thị như hình dưới.
LG c
c) \(y = - 3{x^2} + 6x\)
Phương pháp giải:
+ Xác định đỉnh \(S(\frac{{ - b}}{{2a}};f(\frac{{ - b}}{{2a}}))\)
+ Trục đối xứng \(x = \frac{{ - b}}{{2a}}\)
+ Bề lõm: quay lên trên (nếu a>0), quay xuống dưới nếu a<0.
+ Giao với trục tung tại điểm có tọa độ (0; c).
Lời giải chi tiết:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = - 3{x^2} + 6x\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 6}}{{2.( - 3)}} = 1;{y_S} = - {3.1^2} + 6.1 = 3\)
+ Có trục đối xứng là đường thẳng \(x = 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);
+ Bề lõm quay xuống dưới vì \(a = - 3 < 0\)
+ Cắt trục tung tại điểm có tung độ bằng 0, tức là đồ thị đi qua gốc tọa độ (0; 0).
Ta vẽ được đồ thị như hình dưới.
LG d
d) \(y = 2{x^2} - 5\)
Phương pháp giải:
+ Xác định đỉnh \(S(\frac{{ - b}}{{2a}};f(\frac{{ - b}}{{2a}}))\)
+ Trục đối xứng \(x = \frac{{ - b}}{{2a}}\)
+ Bề lõm: quay lên trên (nếu a>0), quay xuống dưới nếu a<0.
+ Giao với trục tung tại điểm có tọa độ (0; c).
Lời giải chi tiết:
Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = 2{x^2} - 5\) là một parabol (P):
+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.2}} = 0;{y_S} = {2.0^2} - 5 = - 5.\)
+ Có trục đối xứng là đường thẳng \(x = 0\) (trùng với trục Oy);
+ Bề lõm quay lên trên vì \(a = 2 > 0\)
+ Cắt trục tung tại điểm có tung độ bằng -5, tức là đồ thị đi qua điểm có tọa độ (0; -5).
Ta vẽ được đồ thị như hình dưới.
Hello!
Đề thi học kì 2
Chủ đề 1: Thể hiện phẩm chất tốt đẹp của người học sinh
Chủ đề 1. Lịch sử và Sử học
Chủ đề 1. Lịch sử và Sử học
Chuyên đề học tập Toán - Cánh diều Lớp 10
Đề thi, đề kiểm tra Toán lớp 10 - Kết nối tri thức
Đề thi, đề kiểm tra Toán lớp 10 - Chân trời sáng tạo
Đề thi, đề kiểm tra Toán lớp 10 - Cánh diều
Bài giảng ôn luyện kiến thức môn Toán lớp 10
Chuyên đề học tập Toán - Chân trời sáng tạo Lớp 10
Chuyên đề học tập Toán - Kết nối tri thức Lớp 10
Lý thuyết Toán Lớp 10
SBT Toán - Cánh Diều Lớp 10
SBT Toán - Chân trời sáng tạo Lớp 10
SBT Toán - Kết nối tri thức Lớp 10
SGK Toán - Cánh diều Lớp 10
SGK Toán - Kết nối tri thức Lớp 10