Bài 6 trang 92 SGK Hình học 12

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

Trong hệ toạ độ \(Oxyz\), cho mặt phẳng \((α)\) có phương trình \(3x + 5y - z -2 = 0\) và đường thẳng \(d\) có phương trình \(\left\{ \matrix{x = 12 + 4t \hfill \cr y = 9 + 3t \hfill \cr z = 1 + t. \hfill \cr} \right.\)

Lựa chọn câu hỏi để xem giải nhanh hơn
LG a
LG b

LG a

Tìm giao điểm \(M\) của đường thẳng \(d\) và mặt phẳng \((α)\).

Phương pháp giải:

Tham số hóa tọa độ điểm M dạng \(M\left( {12 + 4t;9 + 3t;1 + t} \right)\), thay điểm M vào phương trình mặt phẳng \(\alpha\).

Lời giải chi tiết:

Vì \( M \in d\) nên \(M\left( {12 + 4t;9 + 3t;1 + t} \right)\), thay vào phương trình \((α)\), ta có: \(3(12 + 4t) + 5( 9 + 3t) - (1 + t) - 2 = 0\)

\(\Rightarrow 26t + 78 = 0\) \( \Rightarrow  t = - 3\) \( \Rightarrow  M(0; 0; - 2)\).

LG b

Viết phương trình mặt phẳng \((β)\) chứa điểm \(M\) và vuông góc với đường thẳng \(d\).

Phương pháp giải:

\(\left( \beta  \right) \bot \left( d \right) \Rightarrow {\overrightarrow n _{\left( \beta  \right)}} = {\overrightarrow u _{\left( d \right)}}\). Viết phương trình mặt phẳng đi qua N và nhận \({\overrightarrow u _{\left( d \right)}}\) là 1 VTPT.

Lời giải chi tiết:

Vectơ \(\overrightarrow u (4; 3; 1)\) là vectơ chỉ phương của \(d\). Mặt phẳng \((β)\) vuông góc với \(d\) nhận \(\overrightarrow u \) làm vectơ pháp tuyến. Vì \(M(0; 0; -2) ∈ (β)\) nên phương trình \((β)\) có dạng:

\(4(x - 0) + 3(y - 0) + (z + 2) = 0\)

hay \(4x + 3y + z + 2 = 0\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved