Bài 6 trang 95 SGK Hình học 12

Đề bài

Trong không gian \(Oxyz\) cho bốn điểm \(A(1; 0; 0), B(0; 1; 0), C(0; 0; 1)\) và \(D(1; 1; 1)\)

Mặt cầu ngoại tiếp tứ diện \(ABCD\) có bán kính là:

(A) \({{\sqrt 3 } \over 2}\) ;                          (B) \(\sqrt2\) ;

(C) \(\sqrt3\);                          (D) \({3 \over 4}\) .

Phương pháp giải - Xem chi tiết

Gọi phương trình tổng quát của mặt cầu ngoại tiếp tứ diện ABCD là:

\({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\)

Thay tọa độ các điểm A, B, C, D vào phương trình mặt cầu tìm các hệ số a, b, c, d.

Suy ra bán kính của mặt cầu: \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \)

Lời giải chi tiết

Phương trình tổng quát của mặt cầu ngoại tiếp tứ diện ABCD là:

\({x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\)

Mặt cầu đi qua \(A,B,C,D\) nên ta có hệ:

\(\left\{ \matrix{
1 - 2a + d = 0 \,\,\,\, (1) \hfill \cr
1 - 2b + d = 0 \,\,\,\,  (2) \hfill \cr
1 - 2c + d = 0 \,\,\,\,  (3) \hfill \cr
3 - 2a - 2b - 2c + d = 0 \,\,\,\,  (4) \hfill \cr} \right.\)

Lấy \((1)+(2)+(3)-(4)\) ta được: \(d = 0\)

Thế lần lượt vào các phương trình (1), (2), (3), (4) ta suy ra: \(a = {1 \over 2},b = {1 \over 2},c = {1 \over 2}\)

Vậy bán kính \({R} = \sqrt {{a^2} + {b^2} + {c^2} - d}  = {{\sqrt 3 } \over 2}\)

Chọn (A).

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved