Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Xem hình 48. Chứng minh \(QR // ST.\)
Phương pháp giải - Xem chi tiết
+ Sử dụng: Trong tứ giác nội tiếp tổng hai góc đối bằng \(180^0\)
+ Hai góc kề bù có tổng số đo bằng \(180^0\)
+ Chứng minh cặp góc so le trong \(\widehat{IST}= \widehat{SRQ}\) bằng nhau để suy ra hai đường thẳng song song.
Lời giải chi tiết
Kí hiệu như hình vẽ.
+) Ta có tứ giác \(ISTM\) nội tiếp đường tròn nên:
\(\widehat{S_{1}}+ \widehat{M_1}=180^0\)
Mà \(\widehat{M_{1}}+ \widehat{M_{3}}= 180^0\) (2 góc kề bù)
nên \(\widehat{S_{1}}= \widehat{M_{3}}\)(1)
+) Ta có tứ giác \(IMPN\) nội tiếp đường tròn nên:
\(\widehat{M_{3}}+ \widehat{PNI}=180^0\)
Mà \(\widehat{N_{4}}+ \widehat{PNI}= 180^0\) (kề bù)
nên \(\widehat{M_{3}}= \widehat{N_{4}}\) (2)
+) Ta có tứ giác \(INQS\) nội tiếp đường tròn nên:
\(\widehat{N_{4}}+ \widehat{IRQ}=180^0\)
Mà \(\widehat{R_{2}}+ \widehat{IRQ}= 180^0\) (kề bù)
nên \(\widehat{N_{4}}= \widehat{R_{2}}\) (3)
Từ (1), (2), (3) suy ra \(\widehat{S_{1}}= \widehat{R_{2}}\)
Mà hai góc này ở vị trí so le trong
Do đó \(QR // ST.\)
Tải 20 đề kiểm tra giữa kì 1 Tiếng Anh 9 mới
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hóa học 9
CHƯƠNG IV. BẢO VỆ MÔI TRƯỜNG
Đề thi vào 10 môn Toán Sóc Trăng
Bài 6: Hợp tác cùng phát triển