PHẦN HÌNH HỌC - TOÁN 8 TẬP 2

Bài 60 trang 92 sgk toán 8 tập 2

Đề bài

Cho tam giác vuông \(ABC\), \(\widehat A =90^0, \widehat C=30^0\) và đường phân giác \(BD\) (\(D\) thuộc cạnh \(AC\)). 

a) Tính tỉ số \(\dfrac{{A{\rm{D}}}}{{C{\rm{D}}}}\) .

b) Cho biết độ dài \(AB = 12,5 cm\). Hãy tính chu vi và diện tích của tam giác \(ABC\).

Phương pháp giải - Xem chi tiết

Áp dụng: Tính chất đường phân giác của tam giác, định lí Pitago, công thức tính chu vi và diện tích của tam giác.

Lời giải chi tiết

 

 

a) Xét tam giác \(BCA\) vuông tại \(A\) (gt) có: 

\(\begin{array}{l}
\widehat {ACB} + \widehat {ABC} = {90^0}\\
\Rightarrow \widehat {ABC} = {90^0} - \widehat {ACB} \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;= {90^0} - {30^0} = {60^0}
\end{array}\)

Trên tia đối của tia \(AB\) lấy điểm \(B'\) sao cho \(AB = AB'\) (1)

Xét hai tam giác vuông \(ABC\) và \(AB'C\) có:

\(AC\) chung (gt)

\(AB = AB'\) (gt)

\( \Rightarrow \Delta ABC = \Delta AB'C\) (cạnh góc vuông - cạnh góc vuông)

\( \Rightarrow BC = B'C\) (2 cạnh tương ứng)

\( \Rightarrow \Delta BB'C\) cân tại \(C\).

Lại có \(\widehat {ABC} = {60^0}\) nên suy ra \(\Delta BB'C\) đều (dấu hiệu nhận biết tam giác đều) (2)

Từ (1) và (2) \( \Rightarrow \dfrac{{AB}}{{BC}} =\dfrac{{AB}}{{BB'}}= \dfrac{1}{2}\)

Vì \(BD\) là đường phân giác của \(\Delta ABC\) nên:

\(\dfrac{{DA}}{{DC}} = \dfrac{{BA}}{{BC}} = \dfrac{1}{2}\)

b) \(∆ABC\) vuông tại \(A\) nên áp dụng định lí Pitago ta có:

\(\eqalign{
& A{C^2} = B{C^2} - A{B^2},\,BC = 2AB \cr 
& \Rightarrow A{C^2} = 4A{B^2} - A{B^2} = 3A{B^2} \cr 
& \Rightarrow AC = \sqrt {3A{B^2}} = AB\sqrt 3 \cr 
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 12,5\sqrt 3 \approx 21,65\,cm \cr} \)

Gọi \(p\) là chu vi \(∆ABC\)

\( \Rightarrow p = AB + BC + CA\)

\( \Rightarrow p = 3AB + AC = 3.12,5 + 12,5\sqrt 3 \)

\( \Rightarrow p = 12,5 (3+\sqrt 3 ) \approx 59,15\left( {cm} \right)\)

\({S_{ABC}} = \dfrac{1 }{ 2}AB.AC \approx 135,31(c{m^2})\)

Fqa.vn
Bình chọn:
0/5 (0 đánh giá)
Báo cáo nội dung câu hỏi
Bình luận (0)
Bạn cần đăng nhập để bình luận
Bạn chắc chắn muốn xóa nội dung này ?
FQA.vn Nền tảng kết nối cộng đồng hỗ trợ giải bài tập học sinh trong khối K12. Sản phẩm được phát triển bởi CÔNG TY TNHH CÔNG NGHỆ GIA ĐÌNH (FTECH CO., LTD)
Điện thoại: 1900636019 Email: info@fqa.vn
Location Địa chỉ: Số 21 Ngõ Giếng, Phố Đông Các, Phường Ô Chợ Dừa, Quận Đống Đa, Thành phố Hà Nội, Việt Nam.
Tải ứng dụng FQA
Người chịu trách nhiệm quản lý nội dung: Nguyễn Tuấn Quang Giấy phép thiết lập MXH số 07/GP-BTTTT do Bộ Thông tin và Truyền thông cấp ngày 05/01/2024
Copyright © 2023 fqa.vn All Rights Reserved