Bài 1. Định lí Ta - let trong tam giác
Bài 2. Định lí đảo và hệ quả của định lí Ta - let
Bài 3. Tính chất đường phân giác của tam giác
Bài 4. Khái niệm hai tam giác đồng dạng
Bài 5. Trường hợp đồng dạng thứ nhất
Bài 6. Trường hợp đồng dạng thứ hai
Bài 7. Trường hợp đồng dạng thứ ba
Bài 8. Các trường hợp đồng dạng của tam giác vuông
Bài 9. Ứng dụng thực tế của tam giác đồng dạng
Ôn tập chương III. Tam giác đồng dạng
Bài 1. Hình hộp chữ nhật
Bài 2. Hình hộp chữ nhật (tiếp)
Bài 3. Thể tích của hình hộp chữ nhật
Bài 4. Hình lăng trụ đứng
Bài 5. Diện tích xung quanh của hình lăng trụ đứng
Bài 6. Thể tích của hình lăng trụ đứng
Bài 7. Hình chóp đều và hình chóp cụt đều
Bài 8. Diện tích xung quanh của hình chóp
Bài 9. Thể tích của hình chóp đều
Ôn tập chương IV. Hình lăng trụ đứng. Hình chóp đều
Đề bài
Cho tam giác vuông \(ABC\), \(\widehat A =90^0, \widehat C=30^0\) và đường phân giác \(BD\) (\(D\) thuộc cạnh \(AC\)).
a) Tính tỉ số \(\dfrac{{A{\rm{D}}}}{{C{\rm{D}}}}\) .
b) Cho biết độ dài \(AB = 12,5 cm\). Hãy tính chu vi và diện tích của tam giác \(ABC\).
Phương pháp giải - Xem chi tiết
Áp dụng: Tính chất đường phân giác của tam giác, định lí Pitago, công thức tính chu vi và diện tích của tam giác.
Lời giải chi tiết
a) Xét tam giác \(BCA\) vuông tại \(A\) (gt) có:
\(\begin{array}{l}
\widehat {ACB} + \widehat {ABC} = {90^0}\\
\Rightarrow \widehat {ABC} = {90^0} - \widehat {ACB} \\\;\;\;\;\;\;\;\;\;\;\;\;\;\;= {90^0} - {30^0} = {60^0}
\end{array}\)
Trên tia đối của tia \(AB\) lấy điểm \(B'\) sao cho \(AB = AB'\) (1)
Xét hai tam giác vuông \(ABC\) và \(AB'C\) có:
\(AC\) chung (gt)
\(AB = AB'\) (gt)
\( \Rightarrow \Delta ABC = \Delta AB'C\) (cạnh góc vuông - cạnh góc vuông)
\( \Rightarrow BC = B'C\) (2 cạnh tương ứng)
\( \Rightarrow \Delta BB'C\) cân tại \(C\).
Lại có \(\widehat {ABC} = {60^0}\) nên suy ra \(\Delta BB'C\) đều (dấu hiệu nhận biết tam giác đều) (2)
Từ (1) và (2) \( \Rightarrow \dfrac{{AB}}{{BC}} =\dfrac{{AB}}{{BB'}}= \dfrac{1}{2}\)
Vì \(BD\) là đường phân giác của \(\Delta ABC\) nên:
\(\dfrac{{DA}}{{DC}} = \dfrac{{BA}}{{BC}} = \dfrac{1}{2}\)
b) \(∆ABC\) vuông tại \(A\) nên áp dụng định lí Pitago ta có:
\(\eqalign{
& A{C^2} = B{C^2} - A{B^2},\,BC = 2AB \cr
& \Rightarrow A{C^2} = 4A{B^2} - A{B^2} = 3A{B^2} \cr
& \Rightarrow AC = \sqrt {3A{B^2}} = AB\sqrt 3 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 12,5\sqrt 3 \approx 21,65\,cm \cr} \)
Gọi \(p\) là chu vi \(∆ABC\)
\( \Rightarrow p = AB + BC + CA\)
\( \Rightarrow p = 3AB + AC = 3.12,5 + 12,5\sqrt 3 \)
\( \Rightarrow p = 12,5 (3+\sqrt 3 ) \approx 59,15\left( {cm} \right)\)
\({S_{ABC}} = \dfrac{1 }{ 2}AB.AC \approx 135,31(c{m^2})\)
Tải 10 đề kiểm tra 1 tiết - Chương 11
SGK Ngữ văn 8 - Chân trời sáng tạo tập 1
CHƯƠNG 6. TRAO ĐỐI CHẤT VÀ NĂNG LƯỢNG
Chủ đề 1. Giai điệu tuổi hồng
Chương 3. Mol và tính toán hóa học
SGK Toán 8 - Chân trời sáng tạo
SBT Toán 8 - Cánh Diều
Bài giảng ôn luyện kiến thức môn Toán lớp 8
SGK Toán 8 - Cánh Diều
VBT Toán 8 - Kết nối tri thức với cuộc sống
SBT Toán 8 - Kết nối tri thức với cuộc sống
SGK Toán 8 - Kết nối tri thức với cuộc sống
Tổng hợp Lí thuyết Toán 8
SBT Toán Lớp 8
Giải bài tập Toán Lớp 8
Tài liệu Dạy - học Toán Lớp 8
Đề thi, đề kiểm tra Toán Lớp 8