Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Rút gọn các biểu thức sau:
LG a
LG a
\(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\);
Phương pháp giải:
+ Cách đổi hỗn số ra phân số: \(a\dfrac{b}{c}=\dfrac{a.c+ b}{c}\).
+ Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:
\(\sqrt{A^2.B}=A\sqrt{B}\), nếu \(A \ge 0,\ B \ge 0\).
\(\sqrt{A^2.B}=-A\sqrt{B}\), nếu \(A < 0,\ B \ge 0\).
+ \(\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt a}{\sqrt b}\), với \(a \ge 0,\ b > 0\).
+ \(\sqrt a .\sqrt b =\sqrt{ab}\), với \(a, \ b \ge 0\).
+ \(\dfrac{A}{\sqrt B}=\dfrac{A\sqrt B}{B}\), với \( B > 0\).
Lời giải chi tiết:
Ta có:
\(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
\(=\dfrac{1}{2}\sqrt{16. 3}-2\sqrt{25. 3}-\dfrac{\sqrt{3.11}}{\sqrt{11}}+5\sqrt{\dfrac{1.3+1}{3}}\)
\(=\dfrac{1}{2}\sqrt{4^2. 3}-2\sqrt{5^2. 3}-\dfrac{\sqrt 3.\sqrt{11}}{\sqrt{11}}+5\sqrt{\dfrac{4}{3}}\)
\(=\dfrac{1}{2}.4\sqrt{ 3}-2.5\sqrt{3}-\sqrt{3}+5\dfrac{\sqrt 4}{\sqrt 3}\)
\(=\dfrac{4}{2}\sqrt{ 3}-10\sqrt{3}-\sqrt{3}+5\dfrac{\sqrt{4}.\sqrt 3}{\sqrt{3}.\sqrt {3}}\)
\(=2\sqrt{ 3}-10\sqrt{3}-\sqrt{3}+5\dfrac{2\sqrt{3}}{3}\)
\(=2\sqrt{ 3}-10\sqrt{3}-\sqrt{3}+10\dfrac{\sqrt{3}}{3}\)
\(= \left( {2 - 10 - 1 + \dfrac{10}{3} }\right)\sqrt 3 \)
\(=-\dfrac{17}{3}\sqrt 3\).
LG b
LG b
\(\sqrt{150}+\sqrt{1,6}. \sqrt{60}+4,5.\sqrt{2\dfrac{2}{3}}-\sqrt{6};\)
Phương pháp giải:
+ Cách đổi hỗn số ra phân số: \(a\dfrac{b}{c}=\dfrac{a.c+ b}{c}\).
+ Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:
\(\sqrt{A^2.B}=A\sqrt{B}\), nếu \(A \ge 0,\ B \ge 0\).
\(\sqrt{A^2.B}=-A\sqrt{B}\), nếu \(A < 0,\ B \ge 0\).
+ \(\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt a}{\sqrt b}\), với \(a \ge 0,\ b > 0\).
+ \(\sqrt a .\sqrt b =\sqrt{ab}\), với \(a, \ b \ge 0\).
+ \(\dfrac{A}{\sqrt B}=\dfrac{A\sqrt B}{B}\), với \( B > 0\).
Lời giải chi tiết:
Ta có:
\(\sqrt{150}+\sqrt{1,6}. \sqrt{60}+4,5. \sqrt{2\dfrac{2}{3}}-\sqrt{6}\)
\(=\sqrt{25. 6}+\sqrt{1,6. 60}+4,5.\sqrt{\dfrac{2.3+2}{3}}-\sqrt{6}\)
\(=\sqrt{5^2. 6}+\sqrt{1,6. (6.10)}+4,5\sqrt{\dfrac{8}{3}}-\sqrt{6}\)
\(=5\sqrt{ 6}+\sqrt{(1,6. 10).6}+4,5\dfrac{\sqrt 8}{\sqrt 3}-\sqrt{6}\)
\(=5\sqrt{ 6}+\sqrt{16.6}+4,5\dfrac{\sqrt 8 . \sqrt 3}{ 3}-\sqrt{6}\)
\(=5\sqrt{ 6}+\sqrt{4^2.6}+4,5\dfrac{\sqrt {8 .3}}{ 3}-\sqrt{6}\)
\(= 5\sqrt{6}+4\sqrt{ 6}+4,5. \dfrac{\sqrt{4.2. 3}}{3}-\sqrt{6}\)
\(=5\sqrt{6}+4\sqrt{6}+4,5. \dfrac{\sqrt{2^2.6}}{3}-\sqrt{6}\)
\(=5\sqrt{6}+4\sqrt{6}+4,5. 2\dfrac{\sqrt{6}}{3}-\sqrt{6}\)
\(=5\sqrt{6}+4\sqrt{6}+9\dfrac{\sqrt{6}}{3}-\sqrt{6}\)
\(=5\sqrt{6}+4\sqrt{6}+3\sqrt{6}-\sqrt{6}\)
\(=(5+4+3-1)\sqrt{6}=11\sqrt{6}.\)
Cách 2: Ta biến đổi từng hạng tử rồi thay vào biểu thức ban đầu:
+ \(\sqrt{150}=\sqrt{25.6}=5\sqrt 6\)
+ \(\sqrt{1,6.60}=\sqrt{1,6.(10.6)}=\sqrt{(1,6.10).6}=\sqrt{16.6}\)
\(=4\sqrt 6\)
+ \(4,5.\sqrt{2\dfrac{2}{3}}=4,5.\sqrt{\dfrac{2.3+2}{3}}=4,5.\sqrt{\dfrac{8}{3}}= 4,5\dfrac{{\sqrt {8.3} }}{3}\)
\(=4,5.\dfrac{\sqrt{4.2.3}}{3}=4,5.\dfrac{2.\sqrt 6}{3}=9.\dfrac{\sqrt 6}{3}=3\sqrt 6.\)
Do đó:
\(\sqrt{150}+\sqrt{1,6}. \sqrt{60}+4,5. \sqrt{2\dfrac{2}{3}}-\sqrt{6}\)
\(=5\sqrt 6+4\sqrt 6+3\sqrt 6 - \sqrt 6\)
\(=(5+4+3-1)\sqrt 6=11\sqrt{6}\)
LG c
LG c
\((\sqrt{28}-2\sqrt{3}+\sqrt{7})\sqrt{7}+\sqrt{84};\)
Phương pháp giải:
+ Cách đổi hỗn số ra phân số: \(a\dfrac{b}{c}=\dfrac{a.c+ b}{c}\).
+ Hằng đẳng thức số 1: \((a+b)^2=a^2+2ab+b^2\).
+ Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:
\(\sqrt{A^2.B}=A\sqrt{B}\), nếu \(A \ge 0,\ B \ge 0\).
\(\sqrt{A^2.B}=-A\sqrt{B}\), nếu \(A < 0,\ B \ge 0\).
+ \(\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt a}{\sqrt b}\), với \(a \ge 0,\ b > 0\).
+ \(\sqrt a .\sqrt b =\sqrt{ab}\), với \(a, \ b \ge 0\).
+ \(\dfrac{A}{\sqrt B}=\dfrac{A\sqrt B}{B}\), với \( B > 0\).
Lời giải chi tiết:
Ta có:
\((\sqrt{28}-2\sqrt{3}+\sqrt{7})\sqrt{7}+\sqrt{84}\)
\(=(\sqrt{4.7}-2\sqrt{3}+\sqrt{7})\sqrt{7}+\sqrt{4.21}\)
\(=(\sqrt{2^2.7}-2\sqrt{3}+\sqrt{7})\sqrt{7}+\sqrt{2^2.21}\)
\(=(2\sqrt{7}-2\sqrt{3}+\sqrt{7})\sqrt{7}+2\sqrt{21}\)
\(= 2\sqrt{7}.\sqrt{7}-2\sqrt{3}.\sqrt{7}+\sqrt{7}.\sqrt{7}+2\sqrt{21}\)
\(=2.(\sqrt{7})^2-2\sqrt{3.7}+(\sqrt{7})^2+2\sqrt{21}\)
\(=2.7-2\sqrt{21}+7+2\sqrt{21}\)
\(=14-2\sqrt{21}+7+2\sqrt{21}\)
\(=14+7=21\).
LG d
LG d
\((\sqrt{6}+\sqrt{5})^{2}-\sqrt{120}.\)
Phương pháp giải:
+ Cách đổi hỗn số ra phân số: \(a\dfrac{b}{c}=\dfrac{a.c+ b}{c}\).
+ Hằng đẳng thức số 1: \((a+b)^2=a^2+2ab+b^2\).
+ Sử dụng quy tắc đưa thừa số ra ngoài dấu căn:
\(\sqrt{A^2.B}=A\sqrt{B}\), nếu \(A \ge 0,\ B \ge 0\).
\(\sqrt{A^2.B}=-A\sqrt{B}\), nếu \(A < 0,\ B \ge 0\).
+ \(\sqrt a .\sqrt b =\sqrt{ab}\), với \(a, \ b \ge 0\).
Lời giải chi tiết:
Ta có:
\((\sqrt{6}+\sqrt{5})^{2}-\sqrt{120}\)
\(=(\sqrt 6)^2+2.\sqrt 6 .\sqrt 5+(\sqrt 5)^2-\sqrt{4.30}\)
\(=6+2\sqrt{6.5}+5-2\sqrt{30}\)
\(=6+2\sqrt{30}+5-2\sqrt{30}=6+5=11.\)
Mĩ thuật
CHƯƠNG II. NHIỄM SẮC THỂ
Đề kiểm tra 15 phút - Chương 2 - Hóa học 9
Bài giảng ôn luyện kiến thức cuối học kì 1 môn Sinh học lớp 9
PHẦN HÌNH HỌC - TOÁN 9 TẬP 2