1. Nội dung câu hỏi
Giải các phương trình sau:
a) \(\log \left( {x + 1} \right) = 2;\)
b) \(2{\log _4}x + {\log _2}\left( {x - 3} \right) = 2;\)
c) \(\ln x + \ln \left( {x - 1} \right) = \ln 4x;\)
d) \({\log _3}\left( {{x^2} - 3x + 2} \right) = {\log _3}\left( {2x - 4} \right).\)
2. Phương pháp giải
- Tìm điều kiện cho phương trình
- Giải phương trình bằng định nghĩa hàm số lôgarit hoặc đưa 2 vế về cùng cơ số kết hợp biến đổi sử dụng công thức lôgarit.
3. Lời giải chi tiết
a) \(\log \left( {x + 1} \right) = 2\) (ĐK: x > - 1)
\( \Leftrightarrow x + 1 = {10^2} \Leftrightarrow x = 99\)
Vậy phương trình có nghiệm x = 99.
b) \(2{\log _4}x + {\log _2}\left( {x - 3} \right) = 2\) (ĐK: x > 3)
\(\begin{array}{l} \Leftrightarrow 2{\log _{{2^2}}}x + {\log _2}\left( {x - 3} \right) = 2\\ \Leftrightarrow {\log _2}x + {\log _2}\left( {x - 3} \right) = 2\\ \Leftrightarrow {\log _2}\left[ {x\left( {x - 3} \right)} \right] = 2\\ \Leftrightarrow x\left( {x - 3} \right) = {2^2}\\ \Leftrightarrow {x^2} - 3x - 4 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = - 1\left( {KTM} \right)\\x = 4\left( {TM} \right)\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm x = 4.
c) \(\ln x + \ln \left( {x - 1} \right) = \ln 4x;\) (ĐK: x > 1)
\(\begin{array}{l} \Leftrightarrow \ln \left[ {x\left( {x - 1} \right)} \right] = \ln 4x\\ \Leftrightarrow x\left( {x - 1} \right) = 4x\\ \Leftrightarrow {x^2} - x - 4x = 0\\ \Leftrightarrow {x^2} - 5x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\left( {KTM} \right)\\x = 5\left( {TM} \right)\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm x = 5.
d) \({\log _3}\left( {{x^2} - 3x + 2} \right) = {\log _3}\left( {2x - 4} \right).\) (ĐK: x > 2)
\(\begin{array}{l} \Leftrightarrow {x^2} - 3x + 2 = 2x - 4\\ \Leftrightarrow {x^2} - 5x + 6 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\left( {KTM} \right)\\x = 3\left( {TM} \right)\end{array} \right.\end{array}\)
Vậy phương trình có nghiệm x = 3.
CHƯƠNG II. CẢM ỨNG
HÌNH HỌC-SBT TOÁN 11 NÂNG CAO
Chương II. Sóng
Chuyên đề 1: Tập nghiên cứu và viết báo cáo về một vấn đề văn học trung đại Việt Nam
Chuyên đề 2: Trải nghiệm, thực hành hóa học hữu cơ
SBT Toán Nâng cao Lớp 11
Chuyên đề học tập Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Kết nối tri thức với cuộc sống
SBT Toán 11 - Chân trời sáng tạo
Chuyên đề học tập Toán 11 - Cánh Diều
SBT Toán 11 - Cánh Diều
SBT Toán 11 - Kết nối tri thức với cuộc sống
SGK Toán 11 - Chân trời sáng tạo
SGK Toán 11 - Cánh Diều
Tổng hợp Lí thuyết Toán 11
Bài giảng ôn luyện kiến thức môn Toán lớp 11
SBT Toán Lớp 11
SGK Toán Nâng cao Lớp 11
SGK Toán Lớp 11