Bài 1. Căn bậc hai
Bài 2. Căn thức bậc hai và hằng đẳng thức
Bài 3. Liên hệ giữa phép nhân và phép khai phương
Bài 4. Liên hệ giữa phép chia và phép khai phương
Bài 5. Bảng Căn bậc hai
Bài 6. Biến đổi đơn giản biểu thức chứa căn thức bậc hai
Bài 7. Biến đổi đơn giản biểu thức chứa căn thức bậc hai (tiếp theo)
Bài 8. Rút gọn biểu thức chứa căn bậc hai
Bài 9. Căn bậc ba
Ôn tập chương I – Căn bậc hai. Căn bậc ba
Đề kiểm tra 15 phút - Chương I - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương I - Đại số 9
Bài 1. Nhắc lại và bổ sung các khái niệm về hàm số
Bài 2. Hàm số bậc nhất
Bài 3. Đồ thị của hàm số y = ax + b (a ≠ 0)
Bài 4. Đường thẳng song song và đường thẳng cắt nhau
Bài 5. Hệ số góc của đường thẳng y = ax + b (a ≠ 0).
Ôn tập chương II – Hàm số bậc nhất
Đề kiểm tra 15 phút - Chương 2 - Đại số 9
Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Đại số 9
Chứng minh các đẳng thức sau:
LG a
LG a
\(\left ( \dfrac{1-a\sqrt{a}}{1-\sqrt{a}} +\sqrt{a}\right ). \left ( \dfrac{1-\sqrt{a}}{1-a} \right )^{2}= 1\) với \(a ≥ 0\) và \(a ≠ 1\)
Phương pháp giải:
+ Biến đối vế trái thành vế phải ta sẽ có điều cần chứng minh.
+ \(\sqrt{A^2}=|A|\).
+ \(|A|=A \) nếu \(A \ge 0\),
\(|A|=-A\) nếu \(A < 0\).
+ Sử dụng các hằng đẳng thức:
\(a^2+2ab+b^2=(a+b)^2\)
\(a^2- b^2=(a+b).(a-b)\).
\(a^3- b^3=(a-b)(a^2+ab+b^2)\).
Lời giải chi tiết:
Biến đổi vế trái để được vế phải.
Ta có:
\(VT=\left ( \dfrac{1-a\sqrt{a}}{1-\sqrt{a}} +\sqrt{a}\right ). \left ( \dfrac{1-\sqrt{a}}{1-a} \right )^{2}\)
\(=\left ( \dfrac{1-(\sqrt{a})^3}{1-\sqrt{a}} +\sqrt{a}\right ). \left ( \dfrac{1-\sqrt{a}}{(1-\sqrt a)(1+ \sqrt a)} \right )^{2}\)
\(=\left ( \dfrac{(1-\sqrt{a})(1+\sqrt a+(\sqrt a)^2)}{1-\sqrt{a}} +\sqrt{a}\right ). \left ( \dfrac{1}{1+ \sqrt a} \right )^{2}\)
\(=\left [ (1+\sqrt a+(\sqrt a)^2) +\sqrt{a}\right ]. \dfrac{1}{(1+ \sqrt a)^2}\)
\(=\left [ (1+2\sqrt a+(\sqrt a)^2)\right ]. \dfrac{1}{(1+ \sqrt a)^2}\)
\(=(1+\sqrt a)^2. \dfrac{1}{(1+ \sqrt a)^2}=1=VP\).
LG b
LG b
\(\dfrac{a+b}{b^{2}}\sqrt{\dfrac{a^{2}b^{4}}{a^{2}+2ab+b^{2}}} = \left| a \right|\) với \(a + b > 0\) và \(b ≠ 0\)
Phương pháp giải:
+ Biến đối vế trái thành vế phải ta sẽ có điều cần chứng minh.
+ \(\sqrt{A^2}=|A|\).
+ \(|A|=A \) nếu \(A \ge 0\),
\(|A|=-A\) nếu \(A < 0\).
+ Sử dụng các hằng đẳng thức:
\(a^2+2ab+b^2=(a+b)^2\)
\(a^2- b^2=(a+b).(a-b)\).
\(a^3- b^3=(a-b)(a^2+ab+b^2)\).
Lời giải chi tiết:
Ta có:
\(VT=\dfrac{a+b}{b^{2}}\sqrt{\dfrac{a^{2}b^{4}}{a^{2}+2ab+b^{2}}}\)
\(=\dfrac{a+b}{b^{2}}\sqrt{\dfrac{(ab^2)^2}{(a+b)^2}}\)
\(=\dfrac{a+b}{b^{2}}\dfrac{\sqrt{(ab^2)^2}}{\sqrt{(a+b)^2}}\)
\(=\dfrac{a+b}{b^{2}}\dfrac{|ab^2|}{|a+b|}\)
\(=\dfrac{a+b}{b^{2}}.\dfrac{|a|b^2}{a+b}=|a|=VP\)
Vì \(a+b > 0 \Rightarrow |a+b|=a+b\).
Đề kiểm tra 15 phút - Chương 9 - Sinh 9
Đề thi vào 10 môn Toán Tiền Giang
Bài 13. Vai trò đặc điểm phát triển và phân bố của dịch vụ
Bài 12: Quyền và nghĩa vụ của công dân trong hôn nhân
Chương 5. Dẫn xuất của hiđrocacbon. Polime