Bài 1. Góc ở tâm. Số đo cung
Bài 2. Liên hệ giữa cung và dây
Bài 3. Góc nội tiếp
Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn
Bài 6. Cung chứa góc
Bài 7. Tứ giác nội tiếp
Bài 8. Đường tròn ngoại tiếp. Đường tròn nội tiếp
Bài 9. Độ dài đường tròn, cung tròn
Bài 10. Diện tích hình tròn, hình quạt tròn
Ôn tập chương III – Góc với đường tròn
Đề kiểm tra 15 phút - Chương 3 - Hình học 9
Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 9
Bài 1. Hình trụ - Diện tích xung quanh và thể tích hình trụ
Bài 2. Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt
Bài 3. Hình cầu. Diện tích hình cầu và thể tích hình cầu
Ôn tập chương IV – Hình trụ - Hình nón – Hình cầu
Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Hình học 9
Đề bài
Trên đường tròn bán kính \(R\) lần lượt đặt theo cùng một chiều, kể từ điểm \(A\), ba cung \(\overparen{AB}\), \(\overparen{BC}\), \(\overparen{CD}\) sao cho: \(sđ\overparen{AB}\)=\(60^0\), \(sđ\overparen{BC}\)=\(90^0\), \(sđ\overparen{CD}\)=\(120^0\)
a) Tứ giác \(ABCD\) là hình gì?
b) Chứng minh hai đường chéo của tứ giác \(ABCD\) vuông góc với nhau.
c) Tính độ dài các cạnh của tứ giác \(ABCD\) theo \(R\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
a) Dựa vào các dấu hiệu nhận biết của các hình tứ giác đặc biệt và các tứ giác nào có thể nội tiếp đường tròn để chứng minh tứ giác ABCD là hình gì.
Chú ý rằng: Hình thang nội tiếp được đường tròn là hình thang cân.
b) Số đo của góc có đỉnh nằm trong đường tròn bằng nửa số đo của tổng hai cung bị chắn.
c) Sử dụng định lý : "Số đo góc nội tiếp bằng nửa số đo cung bị chắn."
Sử dụng định lý Pytagoo để tính toán.
Lời giải chi tiết
a) Xét đường tròn \((O)\) ta có:
\(\displaystyle \widehat {BA{\rm{D}}} = {{{{90}^0} + {{120}^0}} \over 2} = {105^0}\) (góc nội tiếp chắn \(\overparen{BCD}\)) (1)
\(\displaystyle \widehat {A{\rm{D}}C} = {{{{60}^0} + {{90}^0}} \over 2} = {75^0}\) ( góc nội tiếp chắn \(\overparen{ABC}\) ) (2)
Từ (1) và (2) có:
\(\widehat {BA{\rm{D}}} + \widehat {A{\rm{D}}C} = {105^0} + {75^0} = {180^0}\) (3)
Mà hai góc này ở vị trí trong cùng phía
Nên \(AB // CD\). Do đó tứ giác \(ABCD\) là hình thang, mà hình thang nội tiếp đường tròn là hình thang cân.
Vậy \(ABCD\) là hình thang cân suy ra (\(BC = AD\) và \(sđ\overparen{BC}\)=\(sđ\overparen{AD}\)=\(90^0\))
b) Giả sử hai đường chéo \(AC\) và \(BD\) cắt nhau tại \(I\).
\(\widehat {CI{\rm{D}}}\) là góc có đỉnh nằm trong đường tròn, nên:
\(\displaystyle \widehat {CI{\rm{D}}}\) \(=\dfrac{sđ\overparen{AB}+sđ\overparen{CD}}{2}\)\(=\displaystyle {{{{60}^0} + {{120}^0}} \over 2} = {90^0}\)
Vậy \(AC \bot BD.\)
c) Vì \(sđ\overparen{AB}= 60^0\) nên \(\widehat {AOB} = {60^0}\) (góc ở tâm)
\(=> ∆AOB\) đều, nên \(AB = OA = OB = R.\)
Vì \( sđ \overparen{BC} = {90^0} \Rightarrow \widehat {BOC} = {90^0}\) (góc ở tâm)
\(\Rightarrow BC = \sqrt{OB^2+OC^2}=R\sqrt2.\)
Kẻ \(OH \bot CD.\)
Tứ giác \(ABCD\) là hình thang cân \(\Rightarrow \widehat{BCD}=\widehat{ADC}=75^0.\)
Lại có \(\Delta BOC\) vuông cân tại \(O \Rightarrow \widehat{BCO}=45^0.\)
\(\Rightarrow \widehat{OCD}=\widehat{BCD}-\widehat{BCO}=75^0-45^0=30^0.\)
Xét \(\Delta OCH\) vuông tại \(H\) ta có:
\(HC=OC.\cos \widehat{OCH}=\dfrac{R\sqrt{3}}{2}.\)
Mà \(H\) là trung điểm của \(CD\) (định lý đường kính vuông góc với dây cung thì đi qua trung điểm của dây ấy).
\(\Rightarrow CD=2.CH=R\sqrt3.\)
Đề thi vào 10 môn Toán Quảng Bình
Đề thi vào 10 môn Văn Quảng Trị
Đề thi vào 10 môn Văn Hưng Yên
Bài 15: Vi phạm pháp luật và trách nhiệm pháp lý của công dân
PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2